5,440 research outputs found

    Balancing and Sequencing of Mixed Model Assembly Lines

    Get PDF
    Assembly lines are cost efficient production systems that mass produce identical products. Due to customer demand, manufacturers use mixed model assembly lines to produce customized products that are not identical. To stay efficient, management decisions for the line such as number of workers and assembly task assignment to stations need to be optimized to increase throughput and decrease cost. In each station, the work to be done depends on the exact product configuration, and is not consistent across all products. In this dissertation, a mixed model line balancing integer program (IP) that considers parallel workers, zoning, task assignment, and ergonomic constraints with the objective of minimizing the number of workers is proposed. Upon observing the limitation of the IP, a Constraint Programming (CP) model that is based on CPLEX CP Optimizer is developed to solve larger assembly line balancing problems. Data from an automotive OEM are used to assess the performance of both the MIP and CP models. Using the OEM data, we show that the CP model outperforms the IP model for bigger problems. A sensitivity analysis is done to assess the cost of enforcing some of the constraint on the computation complexity and the amount of violations to these constraints once they are disabled. Results show that some of the constraints are helpful in reducing the computation time. Specifically, the assignment constraints in which decision variables are fixed or bounded result in a smaller search space. Finally, since the line balance for mixed model is based on task duration averages, we propose a mixed model sequencing model that minimize the number of overload situation that might occur due to variability in tasks times by providing an optimal production sequence. We consider the skip-policy to manage overload situations and allow interactions between stations via workers swimming. An IP model formulation is proposed and a GRASP solution heuristic is developed to solve the problem. Data from the literature are used to assess the performance of the developed heuristic and to show the benefit of swimming in reducing work overload situations

    Time and space multi-manned assembly line balancing problem using genetic algorithm

    Get PDF
    Purpose: Time and Space assembly line balancing problem (TSALBP) is the problem of balancing the line taking the area required by the task and to store the tools into consideration. This area is important to be considered to minimize unplanned traveling distance by the workers and consequently unplanned time waste. Although TSALBP is a realistic problem that express the real-life situation, and it became more practical to consider multi-manned assembly line to get better space utilization, few literatures addressed the problem of time and space in simple assembly line and only one in multi-manned assembly line. In this paper the problem of balancing bi-objective time and space multi-manned assembly line is proposed Design/methodology/approach: Hybrid genetic algorithm under time and space constraints besides assembly line conventional constraints is used to model this problem. The initial population is generated based on conventional assembly line heuristic added to random generations. The objective of this model is to minimize number of workers and number of stations. Findings: The results showed the effectiveness of the proposed model in solving multi-manned time and space assembly line problem. The proposed method gets better results in solving real-life Nissan problem compared to the literature. It is also found that there is a relationship between the variability of task time, maximum task time and cycle time on the solution of the problem. In some problem features it is more appropriate to solve the problem as simple assembly line than multi-manned assembly line. Originality/value: It is the first article to solve the problem of balancing multi-manned assembly line under time and area constraint using genetic algorithm. A relationship between the problem features and the solution is found according to it, the solution method (one sided or multi-manned) is definedPeer Reviewe

    A STUDY ON GENERAL ASSEMBLY LINE BALANCING MODELING METHODS AND TECHNIQUES

    Get PDF
    The borders of the assembly line balancing problem, as classically drawn, are as clear as any other operations research topic in production planning, with well-defined sets of assumptions, parameters, and objective functions. In application, however, these borders are frequently transgressed. Many of these deviations are internal to the assembly line balancing problem itself, arising from any of a wide array of physical or technological features in modern assembly lines. Other issues are founded in the tight coupling of assembly line balancing with external production planning and management problems, as assembly lines are at the intersection of multiple related problems in job sequencing, part flow logistics, worker safety, and quality. The field of General Assembly Line Balancing is devoted to studying the class of adapted and extended solution techniques necessary in order to model these applied line balancing problems. In this dissertation a complex line balancing problem is presented based on the real production environment of our industrial partner, featuring several extensions for task-to-task relationships, station characteristics limiting assignment, and parallel worker zoning interactions. A constructive heuristic is developed along with two improvement heuristics, as well as an integer programming model for the same problem. An experiment is conducted testing each of these new solution methods upon a battery of testbed problems, measuring solution quality, runtime, and achievement of feasibility. Additionally, a new method for measuring a secondary horizontal line balancing objective is established, based on the options-mix paradigm rather than the customary model-mix paradigm

    Profit-oriented disassembly-line balancing

    Get PDF
    As product and material recovery has gained importance, disassembly volumes have increased, justifying construction of disassembly lines similar to assembly lines. Recent research on disassembly lines has focused on complete disassembly. Unlike assembly, the current industry practice involves partial disassembly with profit-maximization or cost-minimization objectives. Another difference between assembly and disassembly is that disassembly involves additional precedence relations among tasks due to processing alternatives or physical restrictions. In this study, we define and solve the profit-oriented partial disassembly-line balancing problem. We first characterize different types of precedence relations in disassembly and propose a new representation scheme that encompasses all these types. We then develop the first mixed integer programming formulation for the partial disassembly-line balancing problem, which simultaneously determines (1) the parts whose demand is to be fulfilled to generate revenue, (2) the tasks that will release the selected parts under task and station costs, (3) the number of stations that will be opened, (4) the cycle time, and (5) the balance of the disassembly line, i.e. the feasible assignment of selected tasks to stations such that various types of precedence relations are satisfied. We propose a lower and upper-bounding scheme based on linear programming relaxation of the formulation. Computational results show that our approach provides near optimal solutions for small problems and is capable of solving larger problems with up to 320 disassembly tasks in reasonable time

    An analysis of task assignment and cycle times when robots are added to human-operated assembly lines, using mathematical programming models

    Get PDF
    Abstract Adding robots to a human-operated assembly line influences both the short- and long-term operation of the line. However, the effects of robots on assembly line capacity and on cycle time can only be studied if appropriate task assignment models are available. This paper shows how traditional assembly line balancing models can be changed in order to determine the optimal number of workstations and cycle time when robots with different technological capabilities are able to perform a predetermined set of tasks. The mathematical programming models for the following three cases are presented and analysed: i) only workers are assigned to the workstations; ii) either a worker or a robot is assigned to a workstation; iii) a robot and a worker are also assigned to specific workstations. The data of an assembly line producing power inverters is used to illustrate the proposed calculations. Both the assignment of tasks and the changes of cycle time are analysed within the AIMMS modelling environment. The computational characteristics of the proposed mathematical programming models are also examined and tested using benchmark problems. The models presented in this paper can assist operations management in making decisions relating to assembly line configuration

    A Survey on Cost and Profit Oriented Assembly Line Balancing

    Get PDF
    http://www.nt.ntnu.no/users/skoge/prost/proceedings/ifac2014/media/files/0866.pdfInternational audienceProblems, approaches and analytical models on assembly line balancing that deal explicitly with cost and profit oriented objectives are analysed. This survey paper serves to identify and work on open problems that have wide practical applications. The conclusions derived might give insights in developing decision support systems (DSS) in planning profitable or cost efficient assembly lines

    Assembly Line

    Get PDF
    An assembly line is a manufacturing process in which parts are added to a product in a sequential manner using optimally planned logistics to create a finished product in the fastest possible way. It is a flow-oriented production system where the productive units performing the operations, referred to as stations, are aligned in a serial manner. The present edited book is a collection of 12 chapters written by experts and well-known professionals of the field. The volume is organized in three parts according to the last research works in assembly line subject. The first part of the book is devoted to the assembly line balancing problem. It includes chapters dealing with different problems of ALBP. In the second part of the book some optimization problems in assembly line structure are considered. In many situations there are several contradictory goals that have to be satisfied simultaneously. The third part of the book deals with testing problems in assembly line. This section gives an overview on new trends, techniques and methodologies for testing the quality of a product at the end of the assembling line

    Reducing physical ergonomic risks at assembly lines by line balancing and job rotation: A survey

    Get PDF
    Factors such as repetitiveness of work, required application of forces, handling of heavy loads, and awkward, static postures expose assembly line workers to risks of musculoskeletal disorders. As a rule, companies perform a post hoc analysis of ergonomic risks and examine ways to modify workplaces with high ergonomic risks. However, it is possible to lower ergonomic risks by taking ergonomics aspects into account right from the planning stage. In this survey, we provide an overview of the existing optimization approaches to assembly line balancing and job rotation scheduling that consider physical ergonomic risks. We summarize major findings to provide helpful insights for practitioners and identify research directions
    corecore