8,632 research outputs found

    Solving basic problems of compliant tolerance analysis by static analogy

    Get PDF
    Predicting the geometric variation of sheet metal assemblies is a complex task, because deformation during joining operations influences the propagation of initial part deviations. To consider this effect, the paper proposes a method that formulates tolerance analysis as an equivalent problem of static analysis. Previously proposed for rigid parts, the static analogy is extended to compliant parts and applied to two-dimensional problems modeled with straight beams under the assumptions of small displacements and normal distributions of errors. For such simple cases, the method solves the problem by linearization, avoiding the use of Monte Carlo simulation and the related computational burden. Compared to existing linearization methods, the static analogy is less efficient in the integration with a finite element solver. However, it features an especially simple procedure that does not require the calculation of deflections, thus allowing a streamlined solution and even manual calculations. The comparison with alternative methods provides a first verification of the feasibility of the method, in view of further developments with the aim of dealing with cases of realistic complexity

    Compensation of deep drawing tools for springback and tool-deformation

    Get PDF
    Manual tool reworking is one of the most time-consuming stages in the\ud preparation of a deep drawing process. Finite Elements (FE) analyses are now widely\ud applied to test the feasibility of the forming process, and with the increasing accuracy of the\ud results, even the springback of a blank can be predicted. In this paper, the results of an FE\ud analysis are used to carry out tool compensation for both springback and tool/press\ud deformations. Especially when high-strength steels are used, or when large body panels are\ud produced, tool compensation in the digital domain helps to reduce work and save time in the\ud press workshop. A successful compensation depends on accurate and efficient FE-prediction,\ud as well as a flexible and process-oriented compensation algorithm. This paper is divided in\ud two sections. The first section deals with efficient modeling of tool/press deformations, but\ud does not discuss compensation. The second section is focused on springback, but here the\ud focus is on the compensation algorithm instead of the springback phenomenon itself

    Efficient spot welding sequence simulation in compliant variation simulation

    Get PDF
    Geometric variation is one of the sources of quality issues in a product. Spot welding is an operation that impacts the final geometric variation of a sheet metal assembly considerably. Evaluating the outcome of the assembly, considering the existing geometrical variation between the components can be achieved using the Method of Influence Coefficients (MIC), based on the Finite Element Method (FEM). The sequence, with which the spot welding operation is performed, influences the final geometric deformations of the assembly. Finding the optimal sequence that results in the minimum geometric deformation is a combinatorial problem that is experimentally and computationally expensive. For an assembly with N number of welds, there are N! possible sequences to perform the spot welding operation. Traditionally, spot welding optimization strategies have been to simulate the geometric variation of the spot-welded assembly after the assembly has been positioned in an inspection fixture, using an appropriate measure of variation. In this approach, the calculation of deformation after springback is one of the most time-consuming steps. In this paper, the cause of variation in the deformations after the springback, between different sequences is identified. The relative displacements of the weld points in the assembly fixture, when welded in a sequence, is the source of such behavior. Capturing these displacements leads to large time savings during sequence optimization. Moreover, this approach is independent of the inspection fixture. The relative weld displacements have been evaluated on two sheet metal assemblies. The sequence optimization problem has been solved for the two assemblies using this approach. The optimal sequence, the corresponding final assembly deformations, and the time-consumption have been compared to the traditional approach. The results show a significant correlation between the weld relative displacements in the assembly fixture, and the assembly deformation in the inspection fixture. Considering the relative weld displacement makes each assembly evaluation less time-consuming, and thereby, sequence optimization time can be reduced up to 30%, compared to the traditional approach

    Towards a Digital Twin for Individualized Manufacturing of Welded Aerospace Structures

    Get PDF
    The aerospace industry is constantly striving towards lower fuel consumption while maintaining a high standard with regards to safety and reliability. These increasing demands require the development of new methods and strategies for efficient and precise manufacturing processes. One way of achieving this goal is fabrication, an approach where components are built by joining multiple small parts into an assembly. This brings many advantages such as more flexibility in product design, however it also adds geometrical variation to the manufacturing process which needs to be managed. Since the parts in the assembly are produced separate from each other before being joined together, issues can occur related to how these parts fit together. If a single part in the assembly deviates slightly from its intended shape, this deviation may propagate in the assembly. It may also stack with deviations in other parts. This can sometimes be difficult to predict and manage using existing manufacturing tools developed within the fields of geometry assurance and robust design.The traditional approach to managing geometrical variation is usually based on making statistical assumptions about the variation that is going to occur in the manufacturing chain. With rising complexity in product design and increasingly tight tolerances, the traditional geometry assurance approach may not be sufficient to guarantee the high geometrical quality required from the final product. Individualized manufacturing has previously been proposed as a way of increasing the precision and reliability of a production process by treating each product individually based on its unique properties. This can be achieved with a digital twin, an emerging technology which works by creating a virtual copy of a physical process. The work presented in this thesis is directed towards realizing a digital twin for fabricated aerospace components. The first contribution is a framework describing how a digital twin could be implemented into a typical fabrication process within the aerospace industry. Since fabrication makes heavy use of welding to join multiple parts, welding simulation is an important component in this implementation. The digital twin also needs to manage measurement data collected from the parts on the assembly line, and this data should be considered within the welding simulation. The result of this simulation is then used to adapt and adjust the manufacturing process according to the conditions that have been measured and analyzed. An analysis loop is proposed in this thesis for realizing the functionality of the digital twin. A case study is conducted to evaluate the precision of the proposed analysis loop by comparing its predictions to a real welded assembly. The results of the case study show that the predictive precision of the proposed method beats the accuracy of a traditional, nominal prediction. This is an important first step towards the completion and future implementation of a digital twin for welded assemblies

    Integrated Process Simulation and Die Design in Sheet Metal Forming

    Get PDF
    During the recent 10-15 years, Computer Aided Process Planning and Die Design evolved as one of the most important engineering tools in sheet metal forming, particularly in the automotive industry. This emerging role is strongly emphasized by the rapid development of Finite Element Modelling, as well. The purpose of this paper is to give a general overview about the recent achievements in this very important field of sheet metal forming and to introduce some special results in this development activity. Therefore, in this paper, an integrated process simulation and die design system developed at the University of Miskolc, Department of Mechanical Engineering will be analysed. The proposed integrated solutions have great practical importance to improve the global competitiveness of sheet metal forming in the very important segment of industry. The concept described in this paper may have specific value both for process planning and die design engineers

    JOINING SEQUENCE ANALYSIS AND OPTIMIZATION FOR IMPROVED GEOMETRICAL QUALITY

    Get PDF
    Disturbances in the manufacturing and assembly processes cause geometrical variation from the ideal geometry. This variation eventually results in functional and aesthetic problems in the final product. Being able to control the disturbances is the desire of the manufacturing industry. \ua0 Joining sequences impact the final geometrical outcome in an assembly considerably. To optimize the sequence for improved geometrical outcome is both experimentally and computationally expensive. In the simulation-based approaches, based on the finite element method, a large number of sequences need to be evaluated.\ua0 In this thesis, the simulation-based joining sequence optimization using non-rigid variation simulation is studied. Initially, the limitation of the applied algorithms in the literature has been addressed. A rule-based optimization approach based on meta-heuristic algorithms and heuristic search methods is introduced to increase the previously applied algorithms\u27 time-efficiency and accuracy. Based on the identified rules and heuristics, a reduced formulation of the sequence optimization is introduced by identifying the critical points for geometrical quality. A subset of the sequence problem is identified and solved in this formulation.\ua0 For real-time optimization of the joining sequence problem, time-efficiency needs to be further enhanced by parallel computations. By identifying the sequence-deformation behavior in the assemblies, black-box surrogate models are introduced, enabling parallel evaluations and accurate approximation of the geometrical quality. Based on this finding, a deterministic stepwise search algorithm for rapid identification of the optimal sequence is introduced.\ua0 Furthermore, a numerical approach to identify the number, location from a set of alternatives, and sequence of the critical joining points for geometrical quality is introduced. Finally, the cause of the various deformations achieved by joining sequences is identified. A time-efficient non-rigid variation simulation approach for evaluating the geometrical quality with respect to the sequences is proposed. \ua0 The results achieved from the studies presented indicate that the simulation-based real-time optimization of the joining sequences is achievable through a parallelized search algorithm and a rapid evaluation of the sequences. The critical joining points for geometrical quality are identified while the sequence is optimized. The results help control the assembly process with respect to the joining operation, improve the geometrical quality, and save significant computational time

    Recent Achievements in Numerical Simulation in Sheet Metal Forming Processes

    Get PDF
    Purpose of this paper: During the recent 10-15 years, Computer Aided Process Planning and Die Design evolved as one of the most important engineering tools in sheet metal forming, particularly in the automotive industry. This emerging role is strongly emphasized by the rapid development of Finite Element Modelling, as well. The purpose of this paper is to give a general overview about the recent achievements in this very important field of sheet metal forming and to introduce some special results in this development activity. Design/methodology/approach: Concerning the CAE activities in sheet metal forming, there are two main approaches: one of them may be regarded as knowledge based process planning, whilst the other as simulation based process planning. The author attempts to integrate these two separate developments in knowledge and simulation based approach by linking commercial CAD and FEM systems. Findings: Applying the above approach a more powerful and efficient process planning and die design solution can be achieved radically reducing the time and cost of product development cycle and improving product quality. Research limitations: Due to the different modelling approaches in CAD and FEM systems, the biggest challenge is to enhance the robustness of data exchange capabilities between various systems to provide an even more streamlined information flow. Practical implications: The proposed integrated solutions have great practical importance to improve the global competitiveness of sheet metal forming in the very important segment of industry. Originality/value: The concept described in this paper may have specific value both for process planning and die design engineers

    Survey on model-based manipulation planning of deformable objects

    Get PDF
    A systematic overview on the subject of model-based manipulation planning of deformable objects is presented. Existing modelling techniques of volumetric, planar and linear deformable objects are described, emphasizing the different types of deformation. Planning strategies are categorized according to the type of manipulation goal: path planning, folding/unfolding, topology modifications and assembly. Most current contributions fit naturally into these categories, and thus the presented algorithms constitute an adequate basis for future developments.Preprin

    Deformation and stress of a composite-metal assembly

    Get PDF
    Compliant structures, e.g. automobile body panel and airplane wing box are widely used. A compliant structure consists of one or more flexible parts, and these parts share the mating features among them. Because of process-induced deformation and part-to-part variations, external forces are applied during the assembly process and the parts are deformed. As a result, the final assembly is pre-stressed and its geometrical shape may deviate from the designed shape. Therefore, the assembly variation and residual stress need to be analysed in order to evaluate the structure performance. In this study, a new approach based on response surface methodology is developed. A number of organised virtual experiments are conducted with the aid of finite element analysis and regression models are fitted to the resulting data. These regression models relate part variations to assembly variation and residual stress. Monte Carlo simulation can be conveniently done using these simple regression models. The effectiveness of this method was illustrated using a composite–metal assembly. It is shown that the method presented in this paper provides a practical and reliable solution to the analysis of compliant structures

    Size Effects in Small Scale Forward Extrusion and Metal Forming

    Get PDF
    Size effects play a significant role in metal processing when the specimen dimensions are reduced. In this study, influence of size effects were investigated on two problem specific processes. First, numerical simulations of a small-scale forward extrusion with varying grain size were performed for both 2D and 3D cases. Here, grains were assigned to non-homogeneous properties in a random fashion. The computational geometry was obtained from Voronoi tessellation in MATLAB, and python-scripting in ABAQUS. Then the effects of size and property non-homogeneity were investigated. Second, a numerical model was simulated to predict final form shapes, punch load requirement, and thickness distribution of hemispherical bowl-shaped forming. The die, punch and cover plate were fabricated using stereolithographic apparatus (SLA). Numerically obtained punch load requirement, thickness distribution, von-Mises contours, and equivalent plastic strain contours were compared for different thickness specimens. Finally, the models were validated by experimental results
    • …
    corecore