219,934 research outputs found

    Advancing Cancer Systems Biology: Introducing the Center for the Development of a Virtual Tumor, CViT

    Get PDF
    Integrative cancer biology research relies on a variety of data-driven computational modeling and simulation methods and techniques geared towards gaining new insights into the complexity of biological processes that are of critical importance for cancer research. These include the dynamics of gene-protein interaction networks, the percolation of sub-cellular perturbations across scales and the impact they may have on tumorigenesis in both experiments and clinics. Such innovative ā€˜systemsā€™ research will greatly benefit from enabling Information Technology that is currently under development, including an online collaborative environment, a Semantic Web based computing platform that hosts data and model repositories as well as high-performance computing access. Here, we present one of the National Cancer Instituteā€™s recently established Integrative Cancer Biology Programs, i.e. the Center for the Development of a Virtual Tumor, CViT, which is charged with building a cancer modeling community, developing the aforementioned enabling technologies and fostering multi-scale cancer modeling and simulation

    Improving Data Center Energy Efficiency Using a Cyber-physical Systems Approach: Integration of Building Information Modeling and Wireless Sensor Networks

    Get PDF
    AbstractThe increase in data center operating costs is driving innovation to improve their energy efficiency. Previous research has investigated computational and physical control intervention strategies to alleviate the competition between energy consumption and thermal performance in data center operation. This study contributes to the body of knowledge by proposing a cyber-physical systems (CPS) approach to innovatively integrate building information modeling (BIM) and wireless sensor networks (WSN). In the proposed framework, wireless sensors are deployed strategically to monitor thermal performance parameters in response to runtime server load distribution. Sensor data are collected and contextualized in reference to the building information model that captures the geometric and functional characteristics of the data center, which will be used as inputs of continuous simulations aiming to predict real-time thermal performance of server working environment. Comparing the simulation results against historical performance data via machine learning and data mining, facility managers can quickly pinpoint thermal hot zones and actuate intervention procedures to improve energy efficiency. This BIM-WSN integration also facilitates smarter power management by capping runtime power demand within peak power capacity of data centers and alerting power outage emergencies. This paper lays out the BIM-WSN integration framework, explains the working mechanism, and discusses the feasibility of implementation in future work

    Developing a Prototype Ground Station for the Processing, Exploitation, and Dissemination of pLEO Sensor Data

    Get PDF
    The Air Forceā€™s Space and Missile Systems Center (SMC) recently executed a quick-turnaround (16 month) effort through the Defense Innovation Unit to develop a prototype ground architecture demonstrating low-latency processing, exploitation, and dissemination of data collected by notional multi-phenomenology sensors hosted on small satellites in a proliferated LEO constellation. This effort, led by the Southwest Research Institute and supported by teammates, Amazon Web Services, SpaceX, and SciTec, Inc., involved the modeling and simulation of a variety of different OPIR, EO/IR, and SAR data streams; transporting these data via space and ground networks; processing the data in the AWS cloud environment; and then disseminating resulting products to tactical users. In this paper, we present an overview of the data transport and mission data processing, performance results from the application of our various Mission Data Processing Chains, a summary of our findings on the latencies associated with both data transport and data processing, and lessons learned including insight into ground-based vs. on-board processing

    From Social Simulation to Integrative System Design

    Full text link
    As the recent financial crisis showed, today there is a strong need to gain "ecological perspective" of all relevant interactions in socio-economic-techno-environmental systems. For this, we suggested to set-up a network of Centers for integrative systems design, which shall be able to run all potentially relevant scenarios, identify causality chains, explore feedback and cascading effects for a number of model variants, and determine the reliability of their implications (given the validity of the underlying models). They will be able to detect possible negative side effect of policy decisions, before they occur. The Centers belonging to this network of Integrative Systems Design Centers would be focused on a particular field, but they would be part of an attempt to eventually cover all relevant areas of society and economy and integrate them within a "Living Earth Simulator". The results of all research activities of such Centers would be turned into informative input for political Decision Arenas. For example, Crisis Observatories (for financial instabilities, shortages of resources, environmental change, conflict, spreading of diseases, etc.) would be connected with such Decision Arenas for the purpose of visualization, in order to make complex interdependencies understandable to scientists, decision-makers, and the general public.Comment: 34 pages, Visioneer White Paper, see http://www.visioneer.ethz.c

    Depth estimation of inner wall defects by means of infrared thermography

    Get PDF
    There two common methods dealing with interpreting data from infrared thermography: qualitatively and quantitatively. On a certain condition, the first method would be sufficient, but for an accurate interpretation, one should undergo the second one. This report proposes a method to estimate the defect depth quantitatively at an inner wall of petrochemical furnace wall. Finite element method (FEM) is used to model multilayer walls and to simulate temperature distribution due to the existence of the defect. Five informative parameters are proposed for depth estimation purpose. These parameters are the maximum temperature over the defect area (Tmax-def), the average temperature at the right edge of the defect (Tavg-right), the average temperature at the left edge of the defect (Tavg-left), the average temperature at the top edge of the defect (Tavg-top), and the average temperature over the sound area (Tavg-so). Artificial Neural Network (ANN) was trained with these parameters for estimating the defect depth. Two ANN architectures, Multi Layer Perceptron (MLP) and Radial Basis Function (RBF) network were trained for various defect depths. ANNs were used to estimate the controlled and testing data. The result shows that 100% accuracy of depth estimation was achieved for the controlled data. For the testing data, the accuracy was above 90% for the MLP network and above 80% for the RBF network. The results showed that the proposed informative parameters are useful for the estimation of defect depth and it is also clear that ANN can be used for quantitative interpretation of thermography data

    Dual-Use Space Technology Transfer Conference and Exhibition

    Get PDF
    This document contains papers presented at the Dual-Use Space Technology Transfer Conference and Exhibition held at the Johnson Space Center February 1-3, 1994. Possible technology transfers covered during the conference were in the areas of information access; innovative microwave and optical applications; materials and structures; marketing and barriers; intelligent systems; human factors and habitation; communications and data systems; business process and technology transfer; software engineering; biotechnology and advanced bioinstrumentation; communications signal processing and analysis; new ways of doing business; medical care; applications derived from control center data systems; human performance evaluation; technology transfer methods; mathematics, modeling, and simulation; propulsion; software analysis and decision tools systems/processes in human support technology; networks, control centers, and distributed systems; power; rapid development perception and vision technologies; integrated vehicle health management; automation technologies; advanced avionics; ans robotics technologies. More than 77 papers, 20 presentations, and 20 exhibits covering various disciplines were presented b experts from NASA, universities, and industry
    • ā€¦
    corecore