6,688 research outputs found

    The Role Of Simulation In The Test And Evaluation Of A Man In The Loop Weapon System

    Get PDF
    The Department of Defense has attempted to use recent advances in modeling and simulation to improve the acquisition process for weapons systems. This Simulation Based Acquisition brought advances in the process, but considerable disagreement remains over the universal applicability of this approach. This paper focuses on the challenges of applying modeling and simulation to the Test and Evaluation of a weapon system with significant Pilot-Vehicle interface concerns. The Standoff Land Attack Missile Expanded Response (SLAM ER) is an aircraft-launched missile with GPS/INS guidance for navigation to the target area and Man In The Loop (MITL) control in the terminal phase. The MITL control is conducted through a two way video and control data link which transmits infrared video from the missile seeker to the control aircraft and guidance update commands from the pilot back to the missile. After initial fielding of the weapon system, two preplanned product improvement programs were begun to add both an Automatic Target Acquisition (ATA) functionality to aid in pilot target identification as well as a capability to engage moving targets at sea (ASuW). Both Software in the Loop and Hardware in the Loop simulations were available for the testing of both these SLAM ER improvements. This paper focuses on the utility of this simulation support in the Test and Evaluation prior to delivery to the operational users. Though the management issues of cost and schedule can be large drivers in the use of modeling and simulation, this paper will focus on the performance aspect of weapon system evaluation. Through the course of both the ATA and ASuW evaluations, simulation was able to provide very limited contributions to evaluations of system performance when MITL control was a concern. Simulation was useful in providing data on easily quantifiable parameters, such as seeker scan rates. However, flight tests with a physical prototype provided the only effective data when subjective measures such as pilot workload and pilot target identification were a concern. The simulators available did not effectively replicate the pilot interface or workload environment to the level required for valid MITL data. Only when an issue with the pilot interface was easily defined in quantifiable engineering data was simulation useful in identifying a possible solution – one that had to be further evaluated in subsequent flight testing. As the quality of models and simulations continue to improve with advances in computing, modeling of the pilot vehicle interfaces may improve in the future. Until that time, management controls will be essential to correct application of modeling and simulation in areas where MITL is a concern. The development of models and simulations should begin early in the acquisition effort with robust verification and validation devoted to the pilot interface. Early identification of the areas in which simulations can contribute to the MITL evaluation effort as well as recognition of the limitations of models and simulations. Finally, the validated simulations should be viewed as an enhancement to the evaluation effort with live testing of the physical prototype forming the basis of the MITL evaluation, particularly when the system approaches the final phases of Developmental Testing and prepares for Operational Testing

    UAV swarm attack: protection system alternatives for Destroyers

    Get PDF
    Systems Engineering Project ReportThe Navy needs to protect Destroyers (DDGs) from Unmanned Aerial Vehicle (UAV) attacks. The team, focusing on improving the DDG’s defenses against small radar cross section UAVs making suicide attacks, established a DRM, identified current capability gaps, established a functional flow, created requirements, modeled the DDG’s current sensing and engagement capabilities in Microsoft Excel, and used Monte Carlo analysis of 500 simulation runs to determine that four out of eight incoming IED UAVs are likely to hit the ship. Sensitivity analysis showed that improving weapon systems is more effec-tive than improving sensor systems, inspiring the generation of alternatives for improving UAV defense. For the eight feasible alternatives the team estimated cost, assessed risk in accordance with the requirements, simulated performance against the eight incoming UAVs, and performed cost benefit analysis. Adding CIWS mounts is the most cost effec-tive alternative, reducing the average number of UAV hits from a baseline of 3.82 to 2.50, costing 816Mtoequipthe62−DDGfleetfora12−yearlifecycle.CombiningthatwithupgradedEWcapabilitiestojamremote−controlledUAVsreducesthehitsto1.56for816M to equip the 62-DDG fleet for a 12-year life cycle. Combining that with upgraded EW capabilities to jam remote-controlled UAVs reduces the hits to 1.56 for 1844M, and combining those with decoy launchers to defeat the radar-seeking Har-py UAVs reduces the hits to 1.12 for $2862M.http://archive.org/details/uavswarmttackpro1094528669Approved for public release; distribution is unlimited.Approved for public release; distribution is unlimited

    An evaluation of NASA's program in human factors research: Aircrew-vehicle system interaction

    Get PDF
    Research in human factors in the aircraft cockpit and a proposed program augmentation were reviewed. The dramatic growth of microprocessor technology makes it entirely feasible to automate increasingly more functions in the aircraft cockpit; the promise of improved vehicle performance, efficiency, and safety through automation makes highly automated flight inevitable. An organized data base and validated methodology for predicting the effects of automation on human performance and thus on safety are lacking and without such a data base and validated methodology for analyzing human performance, increased automation may introduce new risks. Efforts should be concentrated on developing methods and techniques for analyzing man machine interactions, including human workload and prediction of performance

    MH-60 Seahawk / MQ-8 Fire Scout interoperability

    Get PDF
    Approved for public release; distribution is unlimitedAs part of a Naval Postgraduate School's capstone project in Systems Engineering, a project team from Cohort 311-0911 performed a Systems Engineering analysis. This Project focused on defining alternatives for enhanced Anti-Surface Warfare (ASUW) mission effectiveness through increased interoperability and integration for the Fire Scout Unmanned Air Vehicle and Seahawk helicopter. Specifically, the Project explored the available trade space for enhancing communications back to the ship for analysis and decision-making. Modeling and Simulation (MandS) was used to assess the impact of enhanced communication on specific Key performance Parameters (KPPs) and Measures of Effectiveness (MOEs) associated with the ASUW mission. Once the trade space was defined, alternatives were analyzed and a recommendation provided that supports near-, mid-, and long-term mission enhancement
    • …
    corecore