5,493 research outputs found

    Electrochemical impedance analysis of a PEDOT : PSS-based textile energy storage device

    Get PDF
    A textile-based energy storage device with electroactive PEDOT:PSS (poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate)) polymer functioning as a solid-state polyelectrolyte has been developed. The device was fabricated on textile fabric with two plies of stainless-steel electroconductive yarn as the electrodes. In this study, cyclic voltammetry and electrochemical impedance analysis were used to investigate ionic and electronic activities in the bulk of PEDOT:PSS and at its interfaces with stainless steel yarn electrodes. The complex behavior of ionic and electronic origins was observed in the interfacial region between the conductive polymer and the electrodes. The migration and diffusion of the ions involved were confirmed by the presence of the Warburg element with a phase shift of 45° (n = 0.5). Two different equivalent circuit models were found by simulating the model with the experimental results: (QR)(QR)(QR) for uncharged and (QR)(QR)(Q(RW)) for charged samples. The analyses also showed that the further the distance between electrodes, the lower the capacitance of the cell. The distribution of polymer on the cell surface also played important role to change the capacitance of the device. The results of this work may lead to a better understanding of the mechanism and how to improve the performance of the device

    A review of contemporary techniques for measuring ergonomic wear comfort of protective and sport clothing

    Get PDF
    Protective and sport clothing is governed by protection requirements, performance, and comfort of the user. The comfort and impact performance of protective and sport clothing are typically subjectively measured, and this is a multifactorial and dynamic process. The aim of this review paper is to review the contemporary methodologies and approaches for measuring ergonomic wear comfort, including objective and subjective techniques. Special emphasis is given to the discussion of different methods, such as objective techniques, subjective techniques, and a combination of techniques, as well as a new biomechanical approach called modeling of skin. Literature indicates that there are four main techniques to measure wear comfort: subjective evaluation, objective measurements, a combination of subjective and objective techniques, and computer modeling of human–textile interaction. In objective measurement methods, the repeatability of results is excellent, and quantified results are obtained, but in some cases, such quantified results are quite different from the real perception of human comfort. Studies indicate that subjective analysis of comfort is less reliable than objective analysis because human subjects vary among themselves. Therefore, it can be concluded that a combination of objective and subjective measuring techniques could be the valid approach to model the comfort of textile materials

    Improved reception of in-body signals by means of a wearable multi-antenna system

    Get PDF
    High data-rate wireless communication for in-body human implants is mainly performed in the 402-405 MHz Medical Implant Communication System band and the 2.45 GHz Industrial, Scientific and Medical band. The latter band offers larger bandwidth, enabling high-resolution live video transmission. Although in-body signal attenuation is larger, at least 29 dB more power may be transmitted in this band and the antenna efficiency for compact antennas at 2.45 GHz is also up to 10 times higher. Moreover, at the receive side, one can exploit the large surface provided by a garment by deploying multiple compact highly efficient wearable antennas, capturing the signals transmitted by the implant directly at the body surface, yielding stronger signals and reducing interference. In this paper, we implement a reliable 3.5 Mbps wearable textile multi-antenna system suitable for integration into a jacket worn by a patient, and evaluate its potential to improve the In-to-Out Body wireless link reliability by means of spatial receive diversity in a standardized measurement setup. We derive the optimal distribution and the minimum number of on-body antennas required to ensure signal levels that are large enough for real-time wireless endoscopy-capsule applications, at varying positions and orientations of the implant in the human body

    Optimization of cylindrical textile organic field effect transistors using TCAD simulation tool

    Get PDF
    We used a commercial TCAD tool in order to simulate a cylindrical Textile Organic Field Effect Transistor (TOFET) and study the impact of different critical region sizes in its electrical characteristics. The simulation was based on models and parameters similar to those of previous simulations in Organic Thin Film Transistors. We have seen that it is potentially feasible to build transistors which can operate in low voltages by using typical materials. Even if some of the selected typical materials have to be replaced by others more suitable for practical use in the textile industry, the simulation is a good starting point for estimating the device typical operation and parameters. By optimizing critical region sizes of the device we conclude that the device should have an active layer thickness below 100 nm, channel length around 10 mu m and gate oxide thickness as small as possible (300 nm or less), in order to have optimum transistor performance

    From the organic thin film transistor to the 3-D textile organic cylindrical transistors - perspectives, expectations and predictions

    Get PDF
    In this paper we examine the possibility to simulate and study the behaviour of a fiber-based Textile Transistor in a commercial TCAD system. We also examine the capability of such transistors to operate in sufficiently low voltages, aiming to the potential realization of low-voltage wearable textiles in the future. We have seen that it is potentially feasible to build transistors which can operate in low voltages by using typical materials. Even if some of the selected typical materials have to be replaced by others more suitable for practical use in the textile industry, the simulation is a good starting point for estimating the device typical operation and parameters

    From early draping to haute couture models: 20 years of research

    Get PDF
    Simulating the complex fashion garments of haute couture can only be reached through an optimal combination of modeling techniques and numerical methods that combines high computation efficiency with the versatility required for simulating intricate garment designs. Here we describe optimal choices illustrated by their integration into a design and simulation tool that allow interactive prototyping of garments along drape motion and comfortability tests on animated postures. These techniques have been successfully used to bring haute couture garments from early draping of fashion designers, to be simulated and visualized in the virtual worl

    Textile elements for car seat to improve user’s driving comfort

    Get PDF
    The main motive for this research is the desire for the improvement of the automotive seat occupant’s comfort by designing a heating mat prototype made with distance knitting technology with heating elements. In this study, the following design steps were undertaken: preparation of the trajectories of heating cables, calculating the resistance needed to obtain the estimated power of the whole mat, testing of available electroconductive yarns to assign the most suitable yarn to a specific design, preparation and testing of five heating mat prototypes with three various trajectories of the heating element. All samples were evaluated with the same criteria in order to find the most promising design. After all experiments, a prototype with stainless-steel BekaertVR VN 12.2 coated yarn as a heating element, showed the best performance, especially in combination with distance knitted fabric thanks to its internal construction. This work demonstrates that a three-dimensional distance knitted fabric with a heating element introduced into its structure will ensure the physiological sitting comfort. After further subsequent studies, the proposed method can be adapted for industrialisation by using warp knitting machines, thus improving the quality and durability of the heating mat
    • …
    corecore