1,435 research outputs found

    Dynamics and Control of an Electric Power Assist Steering System

    Get PDF
    In this thesis an Active Disturbance Rejection Controller (ADRC) is applied to Electrical Power Assist Steering (EPAS) system which assists the driver in steering the steering wheel of an automobile. Our control objective is to reduce the steering torque exerted by a driver, so that good steering feel of the driver will be achieved in the presence of external disturbances and system uncertainties which are very common in the EPAS system. The robustness and stability of ADRC controlled EPAS system is investigated through frequency-domain analyses. The Bode diagrams and stability margins demonstrate that the control system is stable during the operation and it is robust against external disturbances and structural uncertainties. In addition, the ADRC is simulated on a column-type EPAS system. The simulation results show that using the proposed ADRC, the driver can turn the steering wheel with the desired steering torque, which is independent of load torques that tend to vary with the change of driving condition

    Design, Control and Validation of Two-Speed Clutch-less Automatic Transmission for Electric Vehicle

    Get PDF
    Two-speed or multiple-speed automatic transmissions can obviously improve the overall manipulating performance in terms of shifting quality and energy efficiency when equipped in electric vehicles (EVs). This study details the design of a two-speed clutch-less automatic transmission (2AT) for EVs and the motor controlled shifting mechanism. Firstly, a novel two-speed clutch automatic transmission is devised with a motor-controlled shifting mechanism, which enables the shift motions and the speed control of the driving motor for synchronization during shifts. Secondly, a coordinated control strategy of the driving motor and controlling motor for shifting is detailed during different shifting processes to achieve fast and smooth shifting. The torque trajectory optimization during synchronizing process is attained by applying the Pontryagin's minimum principle. The simulation and experimental results verify the shifting mechanism design and the shift control algorithm in terms of shift response and smoothness for the designed 2AT

    University of Maryland walking robot: A design project for undergraduate students

    Get PDF
    The design and construction required that the walking robot machine be capable of completing a number of tasks including walking in a straight line, turning to change direction, and maneuvering over an obstable such as a set of stairs. The machine consists of two sets of four telescoping legs that alternately support the entire structure. A gear-box and crank-arm assembly is connected to the leg sets to provide the power required for the translational motion of the machine. By retracting all eight legs, the robot comes to rest on a central Bigfoot support. Turning is accomplished by rotating the machine about this support. The machine can be controlled by using either a user operated remote tether or the on-board computer for the execution of control commands. Absolute encoders are attached to all motors (leg, main drive, and Bigfoot) to provide the control computer with information regarding the status of the motors (up-down motion, forward or reverse rotation). Long and short range infrared sensors provide the computer with feedback information regarding the machine's relative position to a series of stripes and reflectors. These infrared sensors simulate how the robot might sense and gain information about the environment of Mars

    The walking robot project

    Get PDF
    A walking robot was designed, analyzed, and tested as an intelligent, mobile, and a terrain adaptive system. The robot's design was an application of existing technologies. The design of the six legs modified and combines well understood mechanisms and was optimized for performance, flexibility, and simplicity. The body design incorporated two tripods for walking stability and ease of turning. The electrical hardware design used modularity and distributed processing to drive the motors. The software design used feedback to coordinate the system and simple keystrokes to give commands. The walking machine can be easily adapted to hostile environments such as high radiation zones and alien terrain. The primary goal of the leg design was to create a leg capable of supporting a robot's body and electrical hardware while walking or performing desired tasks, namely those required for planetary exploration. The leg designers intent was to study the maximum amount of flexibility and maneuverability achievable by the simplest and lightest leg design. The main constraints for the leg design were leg kinematics, ease of assembly, degrees of freedom, number of motors, overall size, and weight

    Power Tag-Axle Traction Assembly (P\u27TATA)

    Get PDF
    Project P’TATA encompassed the design of a selectively-powered tag axle for 6X2-configured Class-8 on-highway tractors, to aid the vehicle in regaining traction during reduced-friction events. For increased fuel savings, 6X2 (1 driving axle, two unpowered axles) configured tractors are preferred over their 6X4 (two driving axles) counterparts; however, the loss of a powered axle renders 6X2 axles more susceptible to slipping events, where the amount of torque required to maintain non-slipping contact with the road exceeds the abilities of the single drive axle. For this and other reasons, the 6X4-configured tractors are chosen despite the fuel efficiency benefits of the 6X2 configuration. Therefore, improvement of the 6X2 tractors’ ability to escape from slipping events should improve driver safety and enhance the tractors’ competitive edge in the market. The design process began with determination of the tag axle torque required to drive the truck out of a slipping event, and a comparison of different power transmission methods. After choosing a transmission method, the electronic control and mechanical systems were designed to so that a motor could engage the axle, transmit power, and then disengage. Using existing and custom-modeled parts, a 3-D model of the system was assembled in CAD software, and a scaled down prototype was constructed to test the control system. An electro-mechanical add-on system was designed to meet the criteria presented by Daimler Trucks of North America. This assembly, shown in Figure 1, employs one DC motor to power the tag axle. A Bendix drive allows for engagement between the motor and the 40:1 reduction worm gear box that multiplies the motor torque. Electricity is pulled from the tractor’s standard battery bank. The electronic control system monitors the wheel speeds at the tag and driving axles, and identifies slipping conditions based on a minimum difference between those speeds. Flowchart and block diagrams of the electronic control circuit were drawn up; parts were ordered and the prototype was built based on these drawings. Once the prototype control circuit was functioning properly, a circuit board was prepared and readied to accept the components of the control circuit. The circuit board was then tested, first for proper wiring and then to ensure proper operation. The final design provides 1120 ft-lbs of torque to the tag axle, remains lightweight at 99.5 lbs compared to the 380 lb differential used in a 6x4, and remains cost-effective with an estimated materials price of 798.42outoftheallotted798.42 out of the allotted 1500 (rough estimate not including manual labor). It is capable of driving the truck at 15 mph out of slip on a 4% gradient of sleek ice. The add-on also does not require significant alterations to the existing tag axle design. The design meets the given criteria, but the industry advisor advanced some further design optimization requests that should be considered in future design iterations. The team recommends the implementation of a higher voltage 3-phase electric motor because they provide more horsepower and would require a lower gear reduction for the system. The Bendix-driven engagement mechanism may need to be redesigned to ensure reliable operation. Ultimately, the success of the system must be validated, both by computer stress simulations and by physical testing with full-scale prototypes, prior to large scale manufacturing and implementation

    A 4-DOF Upper Limb Exoskeleton for Physical Assistance: Design, Modeling, Control and Performance Evaluation

    Get PDF
    Wheelchair mounted upper limb exoskeletons offer an alternative way to support disabled individuals in their activities of daily living (ADL). Key challenges in exoskeleton technology include innovative mechanical design and implementation of a control method that can assure a safe and comfortable interaction between the human upper limb and exoskeleton. In this article, we present a mechanical design of a four degrees of freedom (DOF) wheelchair mounted upper limb exoskeleton. The design takes advantage of non-backdrivable mechanism that can hold the output position without energy consumption and provide assistance to the completely paralyzed users. Moreover, a PD-based trajectory tracking control is implemented to enhance the performance of human exoskeleton system for two different tasks. Preliminary results are provided to show the effectiveness and reliability of using the proposed design for physically disabled people

    Design and control of a loader mechanism for the NMBU agricultural robot

    Get PDF
    Despite the development of new technologies, manual labour still continuous to play a large role within most modern agricultural operations, especially during harvest. Consequently, there is an increasing demand for new machines to reduce labour as a mean to limit costs, while increasing efficiency in a sustainable manner. This thesis concern itself with the design of a mechanism and control system for a robot arm that can substitute workers in logistical operations during strawberry harvest. More specifically, by lifting berry crates onto a robot platform and transporting them from the fields and to the packaging facilities. The robot arm is to be mounted on the platform composing a vehicle- manipulator system. As this thesis is connected to a general research project on agricultural robotics at the Norwegian University of Life Sciences, the chosen platform is the associated field robot Thorvald II. The thesis is divided into two parts, where Part I concerns the mechanical design of the robot arm, while Part II propose a system for controlling the mechanism. The design development process has involved assessments of available solutions before selecting components on the basis of controllability, mechanical properties and costs. The process of selection in Part II is however, based on finding solutions that are compatible with the robot platform’s network (Controller Area Network) and operating system (Robotic Operating System). Part I: Design and Mechanics The design of the robot arm presented in this thesis begun with a preliminary feasibility study conducted by Bjurbeck in September 2016. Following the assessment of this study, the robot arm is designed to have two degrees of freedom operating in the xz-plane. When mounted on the platform, the arm will be free to operate in a 3-dimensional space, as the platform moves in x and y-direction, and rotates around the z-axis. The arm is assembled from two parallel link pairs made from rectangular aluminium tubes, and a revolute and prismatic joint. Both joints are actuated by LinAk LA36 linear electric actuators. The end effector of the arm is a gripper head designed to grasp the handles of the strawberry crate. The gripper head is self-aligning with the crate’s orientation in order to reduce the precision of control needed to envelop and grasp the crate. The frame of the gripper head is made from aluminium angle profiles and sheet metal. A worm drive DC motor actuate the gripper claws via a double link mechanism. Part II: Modeling and Control The geometry of the design presented in Part I is modelled mathematically and the inverse kinematics solved analytically. The kinematics will be used in future implementation of a position control system. Two RoboteQ SDC2160 dual-channel controllers are chosen to control all four actuator mo- tors. The linear actuators are controlled in closed loop position tracking mode with absolute feedback. The gripper motor is controlled in open loop mode with end stop switches detecting the position of the claws. Experiments was conducted to match the controllers with the actuator motors. The experiments revealed firmware issues with the controller. The experiments also affirmed the controller need a script to operate the actuators efficiently. The thesis provides the foundations to build a prototype and write an operating script to test the mechanical design and control system.Til tross for den stadige utviklingen av ny teknologi spiller manuelt arbeid fortsatt en stor rolle i moderne landbruk, særlig i innhøsting. På grunn av den store arbeidkraften som trengs er det en stadig større etterspørsel etter nye maskiner som kan redusere behovet for manuelt arbeid for å redusere utgifter og effektivisere gårdsbruk på en bærekraftig måte. Denne masteroppgaven omhandler det mekaniske designet og reguleringssystemet til en robotarm laget for å kunne erstatte arbeidere i oppgaver tilknyttet logistikk ved innhøsting av jordbær. Dette gjøres ved at armen løfter kasser med bær opp på en robotplattform som transporterer kassene fra jordet og til et pakkeri. Robotarmen er da montert oppå plattformen. Siden oppgaven er tilknyttet et forskningsprosjekt i landbruksrobotikk ved Norges miljø- og biovitenskapelige universitet, var det naturlig å velge den universitetets robot Thorvald II som plattform.submittedVersionM-MP

    Exploration of a hybrid locomotion robot

    Get PDF
    In this work, a hybrid locomotion robotic platform is evaluated. This system combines the benefits of both rolling and walking, with the intent on having the ability to traverse variable terrain. A quadruped leg-wheeled robot was designed, built, and tested. Experimental trials were conducted to demonstrate the overall feasibility of the design. Finally, important conclusions about the effectiveness and value of hybrid locomotion were reached. Posturecontrol is specifically identified as an effective area with great potential
    • …
    corecore