1,973 research outputs found

    A survey on fractional order control techniques for unmanned aerial and ground vehicles

    Get PDF
    In recent years, numerous applications of science and engineering for modeling and control of unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs) systems based on fractional calculus have been realized. The extra fractional order derivative terms allow to optimizing the performance of the systems. The review presented in this paper focuses on the control problems of the UAVs and UGVs that have been addressed by the fractional order techniques over the last decade

    Robust position control of a tilt-wing quadrotor

    Get PDF
    This paper presents a robust position controller for a tilt-wing quadrotor to track desired trajectories under external wind and aerodynamic disturbances. Wind effects are modeled using Dryden model and are included in the dynamic model of the vehicle. Robust position control is achieved by introducing a disturbance observer which estimates the total disturbance acting on the system. In the design of the disturbance observer, the nonlinear terms which appear in the dynamics of the aerial vehicle are also treated as disturbances and included in the total disturbance. Utilization of the disturbance observer implies a linear model with nominal parameters. Since the resulting dynamics are linear, only PID type simple controllers are designed for position and attitude control. Simulations and experimental results show that the performance of the observer based position control system is quite satisfactory

    Formation control of a group of micro aerial vehicles (MAVs)

    Get PDF
    Coordinated motion of Unmanned Aerial Vehicles (UAVs) has been a growing research interest in the last decade. In this paper we propose a coordination model that makes use of virtual springs and dampers to generate reference trajectories for a group of quadrotors. Virtual forces exerted on each vehicle are produced by using projected distances between the quadrotors. Several coordinated task scenarios are presented and the performance of the proposed method is verified by simulations

    Robust hovering control of a quad tilt-wing UAV

    Get PDF
    This paper presents design of a robust hovering controller for a quad tilt-wing UAV to hover at a desired position under external wind and aerodynamic disturbances. Wind and the aerodynamic disturbances are modeled using the Dryden model. In order to increase the robustness of the system, a disturbance observer is utilized to estimate the unknown disturbances acting on the system. Nonlinear terms which appear in the dynamics of the vehicle are also treated as disturbances and included in the total disturbance. Proper compensation of disturbances implies a linear model with nominal parameters. Thus, for robust hovering control, only PID type simple controllers have been employed and their performances have been found very satisfactory. Proposed hovering controller has been verified with several simulations and experiments

    The adaptive control system of quadrocopter motion

    Get PDF
    In this paper we present a system for automatic control of a quadrocopter based on the adaptive control system. The task is to ensure the motion of the quadrocopter along the given route and to control the stabilization of the quadrocopter in the air in a horizontal or in a given angular position by sending control signals to the engines. The nonlinear model of a quadrocopter is expressed in the form of a linear non-stationary system
    • …
    corecore