13,588 research outputs found

    Optimization of a network of compressors in parallel: Operational and maintenance planning – The air separation plant case

    Get PDF
    A general mathematical framework for the optimization of compressors operations in air separation plants that considers operating constraints for compressors, several types of maintenance policies and managerial aspects is presented. The proposed approach can be used in a rolling horizon scheme. The operating status, the power consumption, the startup and the shutdown costs for compressors, the compressor-to-header assignments as well as the outlet mass flow rates for compressed air and distillation products are optimized under full demand satisfaction. The power consumption in the compressors is expressed by regression functions that have been derived using technical and historical data. Several case studies of an industrial air separation plant are solved. The results demonstrate that the simultaneous optimization of maintenance and operational tasks of the compressors favor the generation of better solutions in terms of total costs

    Nonlinear predictive control for durability enhancement and efficiency improvement in a fuel cell power system

    Get PDF
    © . This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/In this work, a nonlinear model predictive control (NMPC) strategy is proposed to improve the efficiency and enhance the durability of a proton exchange membrane fuel cell (PEMFC) power system. The PEMFC controller is based on a distributed parameters model that describes the nonlinear dynamics of the system, considering spatial variations along the gas channels. Parasitic power from different system auxiliaries is considered, including the main parasitic losses which are those of the compressor. A nonlinear observer is implemented, based on the discretised model of the PEMFC, to estimate the internal states. This information is included in the cost function of the controller to enhance the durability of the system by means of avoiding local starvation and inappropriate water vapour concentrations. Simulation results are presented to show the performance of the proposed controller over a given case study in an automotive application (New European Driving Cycle). With the aim of representing the most relevant phenomena that affects the PEMFC voltage, the simulation model includes a two-phase water model and the effects of liquid water on the catalyst active area. The control model is a simplified version that does not consider two-phase water dynamics.Peer ReviewedPostprint (author's final draft

    Extruder for food product (otak–otak) with heater and roll cutter

    Get PDF
    Food extrusion is a form of extrusion used in food industries. It is a process by which a set of mixed ingredients are forced through an opening in a perforated plate or die with a design specific to the food, and is then cut to a specified size by blades [1]. Summary of the invention principal objects of the present invention are to provide a machine capable of continuously producing food products having an’ extruded filler material of meat or similarity and an extruded outer covering of a moldable food product, such as otak-otak, that completely envelopes the filler material

    Improving the Accuracy and Scope of Control-Oriented Vapor Compression Cycle System Models

    Get PDF
    The benefits of applying advanced control techniques to vapor compression cycle systems are well know. The main advantages are improved performance and efficiency, the achievement of which brings both economic and environmental gains. One of the most significant hurdles to the practical application of advanced control techniques is the development of a dynamic system level model that is both accurate and mathematically tractable. Previous efforts in control-oriented modeling have produced a class of heat exchanger models known as moving-boundary models. When combined with mass flow device models, these moving-boundary models provide an excellent framework for both dynamic analysis and control design. This thesis contains the results of research carried out to increase both the accuracy and scope of these system level models. The improvements to the existing vapor compression cycle models are carried out through the application of various modeling techniques, some static and some dynamic, some data-based and some physics-based. Semiempirical static modeling techniques are used to increase the accuracy of both heat exchangers and mass flow devices over a wide range of operating conditions. Dynamic modeling techniques are used both to derive new component models that are essential to the simulation of very common vapor compression cycle systems and to improve the accuracy of the existing compressor model. A new heat exchanger model that accounts for the effects of moisture in the air is presented. All of these model improvements and additions are unified to create a simple but accurate system level model with a wide range of application. Extensive model validation results are presented, providing both qualitative and quantitative evaluation of the new models and model improvements.Air Conditioning and Refrigeration Project 17

    To develop an efficient variable speed compressor motor system

    Get PDF
    This research presents a proposed new method of improving the energy efficiency of a Variable Speed Drive (VSD) for induction motors. The principles of VSD are reviewed with emphasis on the efficiency and power losses associated with the operation of the variable speed compressor motor drive, particularly at low speed operation.The efficiency of induction motor when operated at rated speed and load torque is high. However at low load operation, application of the induction motor at rated flux will cause the iron losses to increase excessively, hence its efficiency will reduce dramatically. To improve this efficiency, it is essential to obtain the flux level that minimizes the total motor losses. This technique is known as an efficiency or energy optimization control method. In practice, typical of the compressor load does not require high dynamic response, therefore improvement of the efficiency optimization control that is proposed in this research is based on scalar control model.In this research, development of a new neural network controller for efficiency optimization control is proposed. The controller is designed to generate both voltage and frequency reference signals imultaneously. To achieve a robust controller from variation of motor parameters, a real-time or on-line learning algorithm based on a second order optimization Levenberg-Marquardt is employed. The simulation of the proposed controller for variable speed compressor is presented. The results obtained clearly show that the efficiency at low speed is significant increased. Besides that the speed of the motor can be maintained. Furthermore, the controller is also robust to the motor parameters variation. The simulation results are also verified by experiment

    Development, Validation, and Application of a Refrigerator Simulation Model

    Get PDF
    This report describes the further development and validation of the Refrigerator/Freezer Simulation (RFSIM) model. The reports also describes the first major application of the model as an analysis tool for new refrigerator designs; several aspects of multi-speed compressor operation were examined with the model. Several improvements were made to the model that facilitated the validation process and the examination of multi-speed compressors: the model was made more general so that it could operate in numerous configurations in addition to the original design and simulation modes; many improvements were made in the modeling logic and robustness of the capillary tube-suction line heat exchanger model; and the equation-of-statebased property routines that calculated the thermodynamic properties were replaced with interpolation routines that were much faster. The RFSIM model, in design and simulation mode, was validated with data from two refrigerators. In both modes, the average model errors were less than ??5% for several important variables such as evaporator capacity and coefficient of performance. The errors of the simulation mode were reduced from the previous model validation primarily by using a different void fraction correlation in the refrigerant charge equations. The results from the validated RFSIM model indicate that a two-speed compressor could yield energy savings of 4% to 14% due to the increased steady-state efficiency at the low speed and an additional 0.5 to 4% savings due to the decreased cycling frequency. The results also showed that the capillary tube-suction line heat exchanger, when designed for the low speed, did not adversely affect the pull-down capacity when the compressor operated at the high speed. Lastly, it was found that a refrigerator operating at low ambient temperatures could actually benefit from a decrease in the condenser fan speed. This change in fan speed increased the evaporator capacity by reallocating charge to the evaporator and subsequently reducing the superheat at the evaporator exit.Air Conditioning and Refrigeration Project 6
    • …
    corecore