120,652 research outputs found

    Overview of Remaining Useful Life prediction techniques in Through-life Engineering Services

    Get PDF
    Through-life Engineering Services (TES) are essential in the manufacture and servicing of complex engineering products. TES improves support services by providing prognosis of run-to-failure and time-to-failure on-demand data for better decision making. The concept of Remaining Useful Life (RUL) is utilised to predict life-span of components (of a service system) with the purpose of minimising catastrophic failure events in both manufacturing and service sectors. The purpose of this paper is to identify failure mechanisms and emphasise the failure events prediction approaches that can effectively reduce uncertainties. It will demonstrate the classification of techniques used in RUL prediction for optimisation of products’ future use based on current products in-service with regards to predictability, availability and reliability. It presents a mapping of degradation mechanisms against techniques for knowledge acquisition with the objective of presenting to designers and manufacturers ways to improve the life-span of components

    Data-driven modeling of the olfactory neural codes and their dynamics in the insect antennal lobe

    Get PDF
    Recordings from neurons in the insects' olfactory primary processing center, the antennal lobe (AL), reveal that the AL is able to process the input from chemical receptors into distinct neural activity patterns, called olfactory neural codes. These exciting results show the importance of neural codes and their relation to perception. The next challenge is to \emph{model the dynamics} of neural codes. In our study, we perform multichannel recordings from the projection neurons in the AL driven by different odorants. We then derive a neural network from the electrophysiological data. The network consists of lateral-inhibitory neurons and excitatory neurons, and is capable of producing unique olfactory neural codes for the tested odorants. Specifically, we (i) design a projection, an odor space, for the neural recording from the AL, which discriminates between distinct odorants trajectories (ii) characterize scent recognition, i.e., decision-making based on olfactory signals and (iii) infer the wiring of the neural circuit, the connectome of the AL. We show that the constructed model is consistent with biological observations, such as contrast enhancement and robustness to noise. The study answers a key biological question in identifying how lateral inhibitory neurons can be wired to excitatory neurons to permit robust activity patterns

    Major challenges in prognostics: study on benchmarking prognostic datasets

    Get PDF
    Even though prognostics has been defined to be one of the most difficult tasks in Condition Based Maintenance (CBM), many studies have reported promising results in recent years. The nature of the prognostics problem is different from diagnostics with its own challenges. There exist two major approaches to prognostics: data-driven and physics-based models. This paper aims to present the major challenges in both of these approaches by examining a number of published datasets for their suitability for analysis. Data-driven methods require sufficient samples that were run until failure whereas physics-based methods need physics of failure progression
    • …
    corecore