8 research outputs found

    Joint ERCIM eMobility and MobiSense Workshop

    Get PDF

    Resource Allocation for Cellular/WLAN Integrated Networks

    Get PDF
    The next-generation wireless communications have been envisioned to be supported by heterogeneous networks using various wireless access technologies. The popular cellular networks and wireless local area networks (WLANs) present perfectly complementary characteristics in terms of service capacity, mobility support, and quality-of-service (QoS) provisioning. The cellular/WLAN interworking is thus an effective way to promote the evolution of wireless networks. As an essential aspect of the interworking, resource allocation is vital for efficient utilization of the overall resources. Specially, multi-service provisioning can be enhanced with cellular/WLAN interworking by taking advantage of the complementary network strength and an overlay structure. Call assignment/reassignment strategies and admission control policies are effective resource allocation mechanisms for the cellular/WLAN integrated network. Initially, the incoming calls are distributed to the overlay cell or WLAN according to call assignment strategies, which are enhanced with admission control policies in the target network. Further, call reassignment can be enabled to dynamically transfer the traffic load between the overlay cell and WLAN via vertical handoff. By these means, the multi-service traffic load can be properly shared between the interworked systems. In this thesis, we investigate the load sharing problem for this heterogeneous wireless overlay network. Three load sharing schemes with different call assignment/reassignment strategies and admission control policies are proposed and analyzed. Effective analytical models are developed to evaluate the QoS performance and determine the call admission and assignment parameters. First, an admission control scheme with service-differentiated call assignment is studied to gain insights on the effects of load sharing on interworking effectiveness. Then, the admission scheme is extended by using randomized call assignment to enable distributed implementation. Also, we analyze the impact of user mobility and data traffic variability. Further, an enhanced call assignment strategy is developed to exploit the heavy-tailedness of data call size. Last, the study is extended to a multi-service scenario. The overall resource utilization and QoS satisfaction are improved substantially by taking into account the multi-service traffic characteristics, such as the delay-sensitivity of voice traffic, elasticity and heavy-tailedness of data traffic, and rate-adaptiveness of video streaming traffic

    Improving Voice and Data Services in Cellular/WLAN Integrated Networks by Admission Control

    Full text link

    Traffic-Driven Energy Efficient Operational Mechanisms in Cellular Access Networks

    Get PDF
    Recent explosive growth in mobile data traffic is increasing energy consumption in cellular networks at an incredible rate. Moreover, as a direct result of the conventional static network provisioning approach, a significant amount of electrical energy is being wasted in the existing networks. Therefore, in recent time, the issue of designing energy efficient cellular networks has drawn significant attention, which is also the foremost motivation behind this research. The proposed research is particularly focused on the design of self-organizing type traffic-sensitive dynamic network reconfiguring mechanisms for energy efficiency in cellular systems. Under the proposed techniques, radio access networks (RANs) are adaptively reconfigured using less equipment leading to reduced energy utilization. Several energy efficient cellular network frameworks by employing inter-base station (BS) cooperation in RANs are proposed. Under these frameworks, based on the instantaneous traffic demand, BSs are dynamically switched between active and sleep modes by redistributing traffic among them and thus, energy savings is achieved. The focus is then extended to exploiting the availability of multiple cellular networks for extracting energy savings through inter-RAN cooperation. Mathematical models for both of these single-RAN and multi-RAN cooperation mechanisms are also formulated. An alternative energy saving technique using dynamic sectorization (DS) under which some of the sectors in the underutilized BSs are turned into sleep mode is also proposed. Algorithms for both the distributed and the centralized implementations are developed. Finally, a two-dimensional energy efficient network provisioning mechanism is proposed by jointly applying both the DS and the dynamic BS switching. Extensive simulations are carried out, which demonstrate the capability of the proposed mechanisms in substantially enhancing the energy efficiency of cellular networks

    Feasibility of wireless mesh for LTE-Advanced small cell access backhaul

    Get PDF
    Mobiilidatan määrä on muutaman viime vuoden aikana kasvanut voimakkaasti ja nykyiset ennustukset arvioivat eksponentiaalista kasvukäyrää tulevien vuosien aikana. Matkapuhelinjärjestelmät ovat kehittyneet nopeasti tämän trendin ohjaamana. Neljännen sukupolven matkapuhelinverkkostandardien myötä, uudet innovaatiot kuten heterogeeniset verkkoratkaisut tarjoavat ratkaisun nykyisiin skaalautuvuus- ja kapasiteettiongelmiin. Joitain ilmeisiä ongelmakohtiakin kuitenkin esiintyy kuten heterogeenisten verkkojen runkokytkennän toteuttaminen. Yksi lupaavimmista tavoista toteuttaa heterogeenisten verkkojen runkokytkentä on langaton ja itseorganisoituva mesh-verkko. Tämän opinnäytetyön tavoitteena on varmistaa ja testata Nokia Siemens Networksin kehittämän mesh-runkokytkentäverkkokonseptin toteutettavuutta ja toiminnallisuutta soveltuvan validointijärjestelmän avulla. Kaiken kaikkiaan validointijärjestelmä ja sen päälle toteutettu mesh-protokolla toimivat moitteettomasti koko kehitys- ja testausprosessin ajan. Konseptin eri ominaisuudet ja mekanismit todistettiin täysin toteutettaviksi ja toimiviksi. Muutamalla lisäominaisuudella ja konseptiparannuksella mesh-konsepti tarjoaa houkuttelevan ja innovatiivisen ratkaisun heterogeenisten verkkojen runkokytkentään tulevaisuudessa.Mobile traffic demands and volumes are increasing and will dramatically keep increasing in the future. Along with this, mobile networks have evolved to better match this growth. Fourth generation cellular network standard introduced a set of new innovations for mobile communications, including support for heterogeneous network deployments. Heterogeneous networking is the likely answer for future mobile data capacity shortage but also poses some challenges, the most evident being how to implement the backhauling. One of the most promising heterogeneous network backhaul solutions is a meshed radio system with self-organizing features. The main scope of this master's thesis is the verification of functionality and feasibility of a wireless mesh backhaul concept developed by Nokia Siemens Networks through a proof-of-concept system. All in all, the wireless mesh proof-of-concept system performed strongly throughout the development and testing process. The different functionalities were proven to work successfully together. With further development and enhancement, the system concept displays extreme potential for a state-of-the-art heterogeneous network backhaul technology

    Building the Future Internet through FIRE

    Get PDF
    The Internet as we know it today is the result of a continuous activity for improving network communications, end user services, computational processes and also information technology infrastructures. The Internet has become a critical infrastructure for the human-being by offering complex networking services and end-user applications that all together have transformed all aspects, mainly economical, of our lives. Recently, with the advent of new paradigms and the progress in wireless technology, sensor networks and information systems and also the inexorable shift towards everything connected paradigm, first as known as the Internet of Things and lately envisioning into the Internet of Everything, a data-driven society has been created. In a data-driven society, productivity, knowledge, and experience are dependent on increasingly open, dynamic, interdependent and complex Internet services. The challenge for the Internet of the Future design is to build robust enabling technologies, implement and deploy adaptive systems, to create business opportunities considering increasing uncertainties and emergent systemic behaviors where humans and machines seamlessly cooperate

    Building the Future Internet through FIRE

    Get PDF
    The Internet as we know it today is the result of a continuous activity for improving network communications, end user services, computational processes and also information technology infrastructures. The Internet has become a critical infrastructure for the human-being by offering complex networking services and end-user applications that all together have transformed all aspects, mainly economical, of our lives. Recently, with the advent of new paradigms and the progress in wireless technology, sensor networks and information systems and also the inexorable shift towards everything connected paradigm, first as known as the Internet of Things and lately envisioning into the Internet of Everything, a data-driven society has been created. In a data-driven society, productivity, knowledge, and experience are dependent on increasingly open, dynamic, interdependent and complex Internet services. The challenge for the Internet of the Future design is to build robust enabling technologies, implement and deploy adaptive systems, to create business opportunities considering increasing uncertainties and emergent systemic behaviors where humans and machines seamlessly cooperate
    corecore