35 research outputs found

    Design Considerations for Traveling-Wave Modulator-Based CMOS Photonic Transmitters

    Get PDF
    Systematic design and simulation methodology for hybrid optical transmitters that combine CMOS circuits in a 130 nm process, and a traveling-wave Mach-Zehnder modulator (TWMZM) in 130 nm SOI CMOS process, is presented. A compact Verilog-A model for the TWMZM is adopted for the electrooptical simulation. A bond wire model using a high-frequency solver is included for accurate package simulation. Transmitter post-layout simulation result exhibits 5.48 dB extinction ratio, 9.6 ps peak-to-peak jitter, and the best power efficiency of 5.81 pJ/bit when operating up to 12.5 Gb/s non-return-to-zero data. A pulse amplitude modulation 4-level transmitter with detailed linearity design procedure is presented which has horizontal and vertical eye opening of 49 ps and 203 μW when operating at 25 Gb/s, and the power efficiency is 5.09 pJ/bit

    Broadband distributed drivers for 3D photonic-electronic wafer-scale packaging

    Get PDF

    Broadband distributed drivers for 3D photonic-electronic wafer-scale packaging

    Get PDF

    Integrated Circuit Design for Hybrid Optoelectronic Interconnects

    Get PDF
    This dissertation focuses on high-speed circuit design for the integration of hybrid optoelectronic interconnects. It bridges the gap between electronic circuit design and optical device design by seamlessly incorporating the compact Verilog-A model for optical components into the SPICE-like simulation environment, such as the Cadence design tool. Optical components fabricated in the IME 130nm SOI CMOS process are characterized. Corresponding compact Verilog-A models for Mach-Zehnder modulator (MZM) device are developed. With this approach, electro-optical co-design and hybrid simulation are made possible. The developed optical models are used for analyzing the system-level specifications of an MZM based optoelectronic transceiver link. Link power budgets for NRZ, PAM-4 and PAM-8 signaling modulations are simulated at system-level. The optimal transmitter extinction ratio (ER) is derived based on the required receiver\u27s minimum optical modulation amplitude (OMA). A limiting receiver is fabricated in the IBM 130 nm CMOS process. By side- by-side wire-bonding to a commercial high-speed InGaAs/InP PIN photodiode, we demonstrate that the hybrid optoelectronic limiting receiver can achieve the bit error rate (BER) of 10-12 with a -6.7 dBm sensitivity at 4 Gb/s. A full-rate, 4-channel 29-1 length parallel PRBS is fabricated in the IBM 130 nm SiGe BiCMOS process. Together with a 10 GHz phase locked loop (PLL) designed from system architecture to transistor level design, the PRBS is demonstrated operating at more than 10 Gb/s. Lessons learned from high-speed PCB design, dealing with signal integrity issue regarding to the PCB transmission line are summarized

    Co-design of the high-speed photonic and electronic integrated circuits

    Get PDF

    Silicon-organic hybrid electro-optic modulators for high-speed communication systems

    Get PDF
    Der Austausch von Informationen über globale Kommunikationsnetze ist für viele alltägliche Lebensbereiche selbstverständlich geworden. Die Informationen werden dabei mit immer weiter wachsender Geschwindigkeit und in zunehmendem Umfang geteilt. Durch den enormen Anstieg des Datenverkehrs kommt verstärkt optische Nachrichtentechnik zum Einsatz. Sie bietet gegenüber elektronischen Übertragungsverfahren entscheidende Vorteile bezüglich der Übertragungsdistanz und -kapazität.Wurde optische Übertragung zunächst nur für die Kommunikation über weite Strecken eingesetzt, machen sich die Nachteile elektronischer Verfahren mit dem stark anwachsenden Datenverkehr auch zunehmend über kürzere Strecken bemerkbar, sodass auch dort vermehrt optische Kommunikationssysteme zum Einsatz kommen. Insgesamt nimmt die Anzahl der photonischen Komponenten, die in Kommunikationsanwendungen eingesetzt werden, dadurch rapide zu. Dies führt dazu, dass die einzelnen Bauteile kostengünstiger, energieeffizienter sowie kompakter werden müssen. Ähnlich zur Entwicklung in der Mikroelektronik, wo immer stärkere Miniaturisierung zu einer dramatischen Leistungssteigerung bei gleichzeitiger Reduktion von Kosten, Platzbedarf und Energieverbrauch geführt hat, soll dies in der Photonik durch die Anwendung von integrierten photonischen Schaltkreisen erreicht werden. Integrierte photonische Schaltkreise zeichnen sich durch hohe Funktionalität bei geringem Platzbedarf aus und ermöglichen eine kostengünstige Massenfertigung. Sie sind daher von erheblichem wissenschaftlichen, technischen und kommerziellen Interesse. Insbesondere die Integration auf Siliziumsubstraten verspricht dabei hohe Integrationsdichten, kombiniert mit der Möglichkeit zur Ko-Integration photonischer und elektronischer Schaltkreise. Ein entscheidender Vorteil ist dabei, dass Silizium seit Jahrzehnten das dominierende Material in der Halbleiterindustrie und eines der häufigsten Elemente der Erdkruste ist. Vorteilhaft ist also neben der guten Verfügbarkeit des Materials, insbesondere die Existenz von etablierten und zuverlässigen Prozessen aus der Mikroelektronik, speziell der CMOS-Fertigung, zur lithographischen Strukturierung. Zudem bietet Silizium viele für die integrierte Photonik günstige physikalische Eigenschaften. Beispielsweise die Transparenz im für die Datenübertragung technisch relevanten Spektralbereiche im Nahinfraroten zwischen 1260 nm und 1625 nm und einen hohen Brechungsindexkontrast zu Siliziumdioxid. Die unter dem Begriff Siliziumphotonik zusammengefasste Technologie ist daher eine vielversprechende Plattform für integrierte photonische Schaltkreise. Eines der wichtigsten Bauteile in der optischen Nachrichtentechnik ist der elektro-optische (EO) Modulator. An der Schnittstelle zwischen Elektronik und Optik ist er das zentrale Element in optischen Sendern. Neben geringen Herstellungskosten, geringem Platzbedarf und guter Energieeffizienz ist eine hohe Modulationsgeschwindigkeit eine essentielle Fähigkeit des Modulators, da diese hohe Bandbreiten in der Datenübertragung ermöglicht. Da Silizium aufgrund der punktsymmetrischen Kristallstruktur keine optische Nichtlinearität zweiter Ordnung aufweist, ist in reinem Silizium kein linearer EO Effekt (Pockels-Effekt) verfügbar. Elektro-optische Modulatoren aus Silizium basieren daher darauf, dass die Konzentration freier Ladungsträger in einem Siliziumwellenleiter moduliert wird, was beispielsweise durch Anlegen einer Spannung an einen pn-Übergang realisiert werden kann. Die Änderung der Konzentration freier Ladungsträger führt dabei zu einer Variation des optischen Brechungsindex (Plasmadispersions-Effekt). Dieser Effekt ist jedoch nicht effizient,wodurch die Energieeffizienz reiner Siliziummodulatoren insgesamt limitiert ist. Durch die heterogene Integration von Silizium mit weiteren Materialien lässt sich die Siliziumphotonik-Plattform erweitern. Organische EO Materialien lassen sich durch molekulares Design gezielt auf einen starken linearen EO Effekt hin optimieren. Durch die Kombination von Silizium-Nanowellenleitern und organischen EO Materialien lassen sich Hybridbauteile realisieren, welche wesentlich energieeffizienter als reine Siliziummodulatoren sind. In der englischsprachigen Fachliteratur werden diese Bauteile auch als silicon-organic hybrid (SOH) bezeichnet. Die vorliegende Arbeit befasst sich mit SOH-Modulatoren und deren praktischer Anwendung in der optischen Hochgeschwindigkeitskommunikation. In vorausgehenden Arbeiten wurden die fundamentalen Prinzipien von SOHModulatoren untersucht und deren grundlegende Einsetzbarkeit für die optische Datenübertragung gezeigt. Die vorliegende Arbeit baut darauf auf und adressiert gezielt Aspekte, die für einen praktischen Einsatz von SOH Bauteilen in optischen Kommunikationssystemen von großer Bedeutung sind: Um ein zielgerichtetes Design der Bauteile zu ermöglichen und grundlegende Zielkonflikte im Design zu erkennen, wird ein Modell für das dynamische EO Verhalten der Modulatoren entwickelt und experimentell verifiziert. Für die breitbandige Aufbau- und Verbindungstechnik werden Konzepte zur elektrischen Anbindung schneller SOH-Modulatoren entwickelt und demonstriert. Verschiedene Modulationsformate werden bei Bruttodatenraten von bis zu 160 Gbit/s erfolgreich getestet und demonstrieren die Eignung von SOHModulatoren für praktische Anwendungsszenarien. Kapitel 1 gibt eine kurze Einführung in das Gebiet der Siliziumphotonik und deren Bedeutung für die optische Datenübertragung. Kapitel 2 beschreibt die theoretischen und technologischen Grundlagen elektrooptischer Bauteile auf Basis der Siliziumphotonik. Dies umfasst einen Überblick über den zugehörigen Stand der Wissenschaft und Technik sowie die für die nachfolgenden Kapitel relevanten Konzepte aus der Hochfrequenz- und der Nachrichtentechnik. Kapitel 3 führt ein quantitatives Modell zur Beschreibung der dynamischen elektrischen und EO Eigenschaften von SOH-Modulatoren ein. Das Modell wird experimentell verifiziert und dient als Grundlage für verbesserte Bauteildesigns zukünftiger SOH-Modulatoren, mit denen sich Bandbreiten von mehr als 100 GHz und π\pi-Spannungen von unter 1 V erreichen lassen. Kapitel 4 demonstriert die Eignung von SOH-Modulatoren für technisch relevante Intensitätsmodulation/Direktempfang-Verfahren (engl. intensity modulation/direct detection, IM/DD), die insbesondere für hochgradig skalierbare Übertragungssysteme mit kleinen und mittleren Reichweiten (board-to-board, rack-to-rack) interessant sind. In diesem Zusammenhang werden verschiedene IM/DD-Modulationsformate experimentell getestet und dabei Bruttodatenraten von bis zu 120 Gbit/s demonstriert. Kapitel 5 befasst sich mit der elektrischen Aufbau- und Verbindungstechnik für SOH-Modulatoren. Dies erfordert Platinen mit guten Hochfrequenzeigenschaften und kleinen Strukturgrößen, um eine hohe Integrationsdichte zu erreichen. Ein Verfahren zur Herstellung von hochfrequenztechnisch breitbandigen Keramikplatinen mit hoher räumlicher Auflösung wird vorgestellt. Mit Hilfe dieser Keramikplatinen wird ein mit Bonddrähten elektrisch angebundener SOH-Modulator vorgestellt und damit eine Bruttodatenrate von 160 Gbit/s demonstriert. Kapitel 6 fasst die vorliegende Arbeit zusammen und gibt einen Ausblick auf zukünftig notwendige Schritte, um die Anwendungsreife von SOH-Modulatoren zu erreichen. Zudem werden potentielle weitere Anwendungsfelder für SOH-Modulatoren diskutiert

    Co-design of the high-speed photonic and electronic integrated circuits

    Get PDF

    High Performance Optical Transmitter Ffr Next Generation Supercomputing and Data Communication

    Get PDF
    High speed optical interconnects consuming low power at affordable prices are always a major area of research focus. For the backbone network infrastructure, the need for more bandwidth driven by streaming video and other data intensive applications such as cloud computing has been steadily pushing the link speed to the 40Gb/s and 100Gb/s domain. However, high power consumption, low link density and high cost seriously prevent traditional optical transceiver from being the next generation of optical link technology. For short reach communications, such as interconnects in supercomputers, the issues related to the existing electrical links become a major bottleneck for the next generation of High Performance Computing (HPC). Both applications are seeking for an innovative solution of optical links to tackle those current issues. In order to target the next generation of supercomputers and data communication, we propose to develop a high performance optical transmitter by utilizing CISCO Systems®\u27s proprietary CMOS photonic technology. The research seeks to achieve the following outcomes: 1. Reduction of power consumption due to optical interconnects to less than 5pJ/bit without the need for Ring Resonators or DWDM and less than 300fJ/bit for short distance data bus applications. 2. Enable the increase in performance (computing speed) from Peta-Flop to Exa-Flops without the proportional increase in cost or power consumption that would be prohibitive to next generation system architectures by means of increasing the maximum data transmission rate over a single fiber. 3. Explore advanced modulation schemes such as PAM-16 (Pulse-Amplitude-Modulation with 16 levels) to increase the spectrum efficiency while keeping the same or less power figure. This research will focus on the improvement of both the electrical IC and optical IC for the optical transmitter. An accurate circuit model of the optical device is created to speed up the performance optimization and enable co-simulation of electrical driver. Circuit architectures are chosen to minimize the power consumption without sacrificing the speed and noise immunity. As a result, a silicon photonic based optical transmitter employing 1V supply, featuring 20Gb/s data rate is fabricated. The system consists of an electrical driver in 40nm CMOS and an optical MZI modulator with an RF length of less than 0.5mm in 0.13&mu m SOI CMOS. Two modulation schemes are successfully demonstrated: On-Off Keying (OOK) and Pulse-Amplitude-Modulation-N (PAM-N N=4, 16). Both versions demonstrate signal integrity, interface density, and scalability that fit into the next generation data communication and exa-scale computing. Modulation power at 20Gb/s data rate for OOK and PAM-16 of 4pJ/bit and 0.25pJ/bit are achieved for the first time of an MZI type optical modulator, respectively

    High-speed optical data transmission for detector instrumentation in particle physics

    Get PDF
    This work discusses the advantage of optical transmission utilizing wavelength-division multiplexing for the read-out of experimental data in detector instrumentation in high-energy physics, astroparticle physics or photon science. A multi-channel optical transmitter is developed as the core component on a silicon-on-insulator platform. It implements Mach-Zehnder modulators with a depletion-type pn-phase shifter in each arm, while the (de )multiplexers rely on planar concave gratings. The modulator design is expected to support a symbol rate in the range 40 GBd even with a phase shifter length of 3 mm. The development of an efficient simulation method is presented, which allows for the reliable prediction of the steady-state modulator characteristics. Furthermore, this work addresses the packaging technology for grating-coupled silicon photonic components. In particular, a fabrication and assembly process for a planar fiber-to-chip coupling using angle-polished single-mode fibers is developed. A long-term-stable coupling with a small footprint is achieved, of which the coupling efficiency is only weakly dependent on ambient conditions

    Aspectos de interconectividade dos moduladores de polímero

    Get PDF
    Orientador: Hugo Enrique Hernández-FigueroaTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de ComputaçãoResumo: As interconexões ópticas e elétricas são de grande interese na area de encapsulamento de circuitos integrados híbridos fotônicos. Baixas perdas e banda larga são necessárias para o desenvolvimento de novas tecnologías na área. Nesta tese apresentan-se as seguintes contribuições originais: uma metodologia do modelamento de interconexões elétricas em encapsulamento de moduladores de polímero eletro-óptico, um dispositivo óptico compacto de banda larga para interconectar a plataforma de silício sobre isolante com a plataforma de filmes finos de polímero sobre silícioAbstract: Electrical and optical interconnects are of great interest for photonic integrated circuits with hybrid platforms. Low loss and wide band are essential for the development of new technologies in this area. In this thesis, we present the following original contributions: a methodology for modeling electrical ceramic interconnects inside an electrooptic polymer packaging, and a compact low-loss optical interconnect for the silicon-on-insulator platform to the thin-film polymer on silicon platformDoutoradoTelecomunicações e TelemáticaDoutor em Engenharia Elétrica07/2014-36CAPE
    corecore