192 research outputs found

    Leveraging intelligence from network CDR data for interference aware energy consumption minimization

    Get PDF
    Cell densification is being perceived as the panacea for the imminent capacity crunch. However, high aggregated energy consumption and increased inter-cell interference (ICI) caused by densification, remain the two long-standing problems. We propose a novel network orchestration solution for simultaneously minimizing energy consumption and ICI in ultra-dense 5G networks. The proposed solution builds on a big data analysis of over 10 million CDRs from a real network that shows there exists strong spatio-temporal predictability in real network traffic patterns. Leveraging this we develop a novel scheme to pro-actively schedule radio resources and small cell sleep cycles yielding substantial energy savings and reduced ICI, without compromising the users QoS. This scheme is derived by formulating a joint Energy Consumption and ICI minimization problem and solving it through a combination of linear binary integer programming, and progressive analysis based heuristic algorithm. Evaluations using: 1) a HetNet deployment designed for Milan city where big data analytics are used on real CDRs data from the Telecom Italia network to model traffic patterns, 2) NS-3 based Monte-Carlo simulations with synthetic Poisson traffic show that, compared to full frequency reuse and always on approach, in best case, proposed scheme can reduce energy consumption in HetNets to 1/8th while providing same or better Qo

    Separation Framework: An Enabler for Cooperative and D2D Communication for Future 5G Networks

    Get PDF
    Soaring capacity and coverage demands dictate that future cellular networks need to soon migrate towards ultra-dense networks. However, network densification comes with a host of challenges that include compromised energy efficiency, complex interference management, cumbersome mobility management, burdensome signaling overheads and higher backhaul costs. Interestingly, most of the problems, that beleaguer network densification, stem from legacy networks' one common feature i.e., tight coupling between the control and data planes regardless of their degree of heterogeneity and cell density. Consequently, in wake of 5G, control and data planes separation architecture (SARC) has recently been conceived as a promising paradigm that has potential to address most of aforementioned challenges. In this article, we review various proposals that have been presented in literature so far to enable SARC. More specifically, we analyze how and to what degree various SARC proposals address the four main challenges in network densification namely: energy efficiency, system level capacity maximization, interference management and mobility management. We then focus on two salient features of future cellular networks that have not yet been adapted in legacy networks at wide scale and thus remain a hallmark of 5G, i.e., coordinated multipoint (CoMP), and device-to-device (D2D) communications. After providing necessary background on CoMP and D2D, we analyze how SARC can particularly act as a major enabler for CoMP and D2D in context of 5G. This article thus serves as both a tutorial as well as an up to date survey on SARC, CoMP and D2D. Most importantly, the article provides an extensive outlook of challenges and opportunities that lie at the crossroads of these three mutually entangled emerging technologies.Comment: 28 pages, 11 figures, IEEE Communications Surveys & Tutorials 201

    Game Theoretic Efficient Radio Resource Allocation in 5G Resilient Networks:A Data Driven Approach

    Get PDF
    In recent years, 5G resilient networks have gained significant attention in the wireless industry. The prime concern of commercial networks is to maximize network capacity to increase their revenue. However, in disaster situations during outages when cell sites are down, instead of capacity, coverage becomes predominant. In this paper, we propose a game theory–based optimal resource allocation scheme, while aiming to maximize the sum rate and coverage probability for the uplink transmissions in disaster situations. The proposed hierarchical game theoretical framework optimizes the uplink performance in multitier heterogeneous network with pico base stations and femto access points overlaid under a macro base station. The test simulations are based on a real‐time data set obtained for a predefined amount of time. The data statistics are then manipulated to create practical disaster situations. The solution for the noncooperative game has been obtained by using pure strategy Nash equilibrium. We perform simulations with different failure rates and the results show that the proposed scheme improves the sum rate and outage probability by significant margin with or without disaster scenario

    Mobility Analysis and Management for Heterogeneous Networks

    Get PDF
    The global mobile data traffic has increased tremendously in the last decade due to the technological advancement in smartphones. Their endless usage and bandwidth-intensive applications will saturate current 4G technologies and has motivated the need for concrete research in order to sustain the mounting data traffic demand. In this regard, the network densification has shown to be a promising direction to cope with the capacity demands in future 5G wireless networks. The basic idea is to deploy several low power radio access nodes called small cells closer to the users on the existing large radio foot print of macrocells, and this constitutes a heterogeneous network (HetNet). However, there are many challenges that operators face with the dense HetNet deployment. The mobility management becomes a challenging task due to triggering of frequent handovers when a user moves across the network coverage areas. When there are fewer users associated in certain small cells, this can lead to significant increase in the energy consumption. Intelligently switching them to low energy consumption modes or turning them off without seriously degrading user performance is desirable in order to improve the energy savings in HetNets. This dynamic power level switching in the small cells, however, may cause unnecessary handovers, and it becomes important to ensure energy savings without compromising handover performance. Finally, it is important to evaluate mobility management schemes in real network deployments, in order to find any problems affecting the quality of service (QoS) of the users. The research presented in this dissertation aims to address these challenges. First, to tackle the mobility management issue, we develop a closed form, analytical model to study the handover and ping-pong performance as a function of network parameters in the small cells, and verify its performance using simulations. Secondly, we incorporate fuzzy logic based game-theoretic framework to address and examine the energy efficiency improvements in HetNets. In addition, we design fuzzy inference rules for handover decisions and target base station selection is performed through a fuzzy ranking technique in order to enhance the mobility robustness, while also considering energy/spectral efficiency. Finally, we evaluate the mobility performance by carrying out drive test in an existing 4G long term evolution (LTE) network deployment using software defined radios (SDR). This helps to obtain network quality information in order to find any problems affecting the QoS of the users

    User Association in 5G Networks: A Survey and an Outlook

    Get PDF
    26 pages; accepted to appear in IEEE Communications Surveys and Tutorial
    corecore