88 research outputs found

    A Model-Based Framework for the Smart Manufacturing of Polymers

    Get PDF
    It is hard to point a daily activity in which polymeric materials or plastics are not involved. The synthesis of polymers occurs by reacting small molecules together to form, under certain conditions, long molecules. In polymer synthesis, it is mandatory to assure uniformity between batches, high-quality of end-products, efficiency, minimum environmental impact, and safety. It remains as a major challenge the establishment of operational conditions capable of achieving all objectives together. In this dissertation, different model-centric strategies are combined, assessed, and tested for two polymerization systems. The first system is the synthesis of polyacrylamide in aqueous solution using potassium persulfate as initiator in a semi-batch reactor. In this system, the proposed framework integrates nonlinear modelling, dynamic optimization, advanced control, and nonlinear state estimation. The objectives include the achievement of desired polymer characteristics through feedback control and a complete motoring during the reaction. The estimated properties are close to experimental values, and there is a visible noise reduction. A 42% improvement of set point accomplishment in average is observed when comparing feedback control combined with a hybrid discrete-time extended Kalman filter (h-DEKF) and feedback control only. The 4-state geometric observer (GO) with passive structure, another state estimation strategy, shows the best performance. Besides achieving smooth signal processing, the observer improves 52% the estimation of the final molecular weight distribution when compared with the h-DEKF. The second system corresponds to the copolymerization of ethylene with 1,9-decadiene using a metallocene catalyst in a semi-batch reactor. The evaluated operating conditions consider different diene concentrations and reaction temperatures. Initially, the nonlinear model is validated followed by a global sensitivity analysis, which permits the selection of the important parameters. Afterwards, the most important kinetic parameters are estimated online using an extended Kalman filter (EKF), a variation of the GO that uses a preconditioner, and a data-driven strategy referred as the retrospective cost model refinement (RCMR) algorithm. The first two strategies improve the measured signal, but fail to predict other properties. The RCMR algorithm demonstrates an adequate estimation of the unknown parameters, and the estimates converge close to theoretical values without requiring prior knowledge

    Maximization of propylene in an industrial FCC unit

    Get PDF
    YesThe FCC riser cracks gas oil into useful fuels such as gasoline, diesel and some lighter products such as ethylene and propylene, which are major building blocks for the polyethylene and polypropylene production. The production objective of the riser is usually the maximization of gasoline and diesel, but it can also be to maximize propylene. The optimization and parameter estimation of a six-lumped catalytic cracking reaction of gas oil in FCC is carried out to maximize the yield of propylene using an optimisation framework developed in gPROMS software 5.0 by optimizing mass flow rates and temperatures of catalyst and gas oil. The optimal values of 290.8 kg/s mass flow rate of catalyst and 53.4 kg/s mass flow rate of gas oil were obtained as propylene yield is maximized to give 8.95 wt%. When compared with the base case simulation value of 4.59 wt% propylene yield, the maximized propylene yield is increased by 95%

    Matematički model i simulacija dinamike procesa polimerizacije polietilena niske gustoće u cijevnom reaktoru

    Get PDF
    The mathematical model of the dynamics of thermohydraulic processes in a high pressure tubular reactor for production of low-density polyethylen has been presented. The equations of the mathematical model have been formulated based on one-dimensional fluid flow assumptions. Polyethylen production has been modelled by multivaribale, nonlinear function defining dependence on temperature, concentration and flow velocity. Simulations results of typical operating conditions (start-up, regular operation, transient response to coolant temperature changes) provide a realistic description of the process.U radu je opisan matematički model dinamike termohidrauličkih procesa u visokotlačnom cijevnom reaktoru za proizvodnju polietilena niske gustoće. Matematički model izveden je primjenom pretpostavke jednodimenzijskog strujanja fluida. Produkcija polietilena opisana je viševarijabilnom, nelinearnom funkcijom koja definira ovisnost brzine produkcije polietilena o temperaturi reakcijske smjese, koncentraciji reaktanata i brzini strujanja. Rezultati simulacija karakterističnih pogonskih stanja: upuštanja, normalnog pogona i poremećaja hlađenja, pokazuju da model pruža realističnu sliku procesa s relativno malim razlikama između proračunskih i izmjerenih vrijednosti temperatura reakcijske smjese

    Advances in Mathematical Modeling of Gas-Phase Olefin Polymerization

    Get PDF
    Mathematical modeling of olefin polymerization processes has advanced significantly, driven by factors such as the need for higher-quality end products and more environmentally-friendly processes. The modeling studies have had a wide scope, from reactant and catalyst characterization and polymer synthesis to model validation with plant data. This article reviews mathematical models developed for olefin polymerization processes. Coordination and free-radical mechanisms occurring in different types of reactors, such as fluidized bed reactor (FBR), horizontal-stirred-bed reactor (HSBR), vertical-stirred-bed reactor (VSBR), and tubular reactor are reviewed. A guideline for the development of mathematical models of gas-phase olefin polymerization processes is presented

    Polymer Reactor Modeling, Design and Monitoring

    Get PDF
    Polymers range from synthetic plastics, such as polyacrylates, to natural biopolymers, such as proteins and DNA. The large molecular mass of polymers and our ability to manipulate their compositions and molecular structures have allowed for producing synthetic polymers with attractive properties. new polymers with remarkable characteristics are synthesized. Because of the huge production volume of commodity polymers, a little improvement in the operation of commodity-polymer processes can lead to significant economic gains. On the other hand, a little improvement in the quality of specialty polymers can lead to substantial increase in economic profits

    Post polymerization of polyester for fiber formation

    Get PDF
    corecore