86 research outputs found

    ์‹ค์‹œ๊ฐ„ ๊ทผ๊ฑฐ๋ฆฌ ์˜์ƒํ™”๋ฅผ ์œ„ํ•œ MIMO ์—ญํ•ฉ์„ฑ ๊ฐœ๊ตฌ ๋ ˆ์ด๋” ์‹œ์Šคํ…œ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€, 2022. 8. ๋‚จ์ƒ์šฑ.Microwave and millimeter wave (micro/mmW) imaging systems have advantages over other imaging systems in that they have penetration properties over non-metallic structures and non-ionization. However, these systems are commercially applicable in limited areas. Depending on the quality and size of the images, a system can be expensive and images cannot be provided in real-time. To overcome the challenges of the current micro/mmW imaging system, it is critical to suggest a new system concept and prove its potential benefits and hazards by demonstrating the testbed. This dissertation presents Ku1DMIC, a wide-band micro/mmW imaging system using Ku-band and 1D-MIMO array, which can overcome the challenges above. For cost-effective 3D imaging capabilities, Ku1DMIC uses 1D-MIMO array configuration and inverse synthetic aperture radar (ISAR) technique. At the same time, Ku1DMIC supports real-time data acquisition through a system-level design of a seamless interface with frequency modulated continuous wave (FMCW) radar. To show the feasibility of 3D imaging with Ku1DMIC and its real-time capabilities, an accelerated imaging algorithm, 1D-MIMO-ISAR RSA, is proposed and demonstrated. The detailed contributions of the dissertation are as follows. First, this dissertation presents Ku1DMIC โ€“ a Ku-band MIMO frequency-modulated continuous-wave (FMCW) radar experimental platform with real-time 2D near-field imaging capabilities. The proposed system uses Ku-band to cover the wider illumination area given the limited number of antennas and uses a fast ramp and wide-band FMCW waveform for rapid radar data acquisition while providing high-resolution images. The key design aspect behind the platform is stability, reconfigurability, and real-time capabilities, which allows investigating the exploration of the systemโ€™s strengths and weaknesses. To satisfy the design aspect, a digitally assisted platform is proposed and realized based on an AMD-Xilinx UltraScale+ Radio Frequency System on Chip (RFSoC). The experimental investigation for real-time 2D imaging has proved the ability of video-rate imaging at around 60 frames per second. Second, a waveform digital pre-distortion (DPD) method and calibration method are proposed to enhance the image quality. Even if a clean FMCW waveform is generated with the aid of the optimized waveform generator, the signal will inevitably suffer from distortion, especially in the RF subsystem of the platform. In near-field imaging applications, the waveform DPD is not effective at suppressing distortion in wide-band FMCW radar systems. To solve this issue, the LO-DPD architecture and binary search based DPD algorithm are proposed to make the waveform DPD effective in Ku1DMIC. Furthermore, an image-domain optimization correction method is proposed to compensate for the remaining errors that cannot be eliminated by the waveform DPD. For robustness to various unwanted signals such as noise and clutter signals, two regularized least squares problems are applied and compared: the generalized Tikhonov regularization and the total variation (TV) regularization. Through various 2D imaging experiments, it is confirmed that both methods can enhance the image quality by reducing the sidelobe level. Lastly, the research is conducted to realize real-time 3D imaging by applying the ISAR technique to Ku1DMIC. The realization of real-time 3D imaging using 1D-MIMO array configuration is impactful in that this configuration can significantly reduce the costs of the 3D imaging system and enable imaging of moving objects. To this end, the signal model for the 1D-MIMO-ISAR configuration is presented, and then the 1D-MIMO-ISAR range stacking algorithm (RSA) is proposed to accelerate the imaging reconstruction process. The proposed 1D-MIMO-ISAR RSA can reconstruct images within hundreds of milliseconds while maintaining almost the same image quality as the back-projection algorithm, bringing potential use for real-time 3D imaging. It also describes strategies for setting ROI, considering the real-world situations in which objects enter and exit the field of view, and allocating GPU memory. Extensive simulations and experiments have demonstrated the feasibility and potential benefits of 1D-MIMO-IASR configuration and 1D-MIMO-ISAR RSA.๋งˆ์ดํฌ๋กœํŒŒ ๋ฐ ๋ฐ€๋ฆฌ๋ฏธํ„ฐํŒŒ(micro/mmW) ์˜์ƒํ™” ์‹œ์Šคํ…œ์€ ๋น„๊ธˆ์† ๊ตฌ์กฐ ๋ฐ ๋น„์ด์˜จํ™”์— ๋น„ํ•ด ์นจํˆฌ ํŠน์„ฑ์ด ์žˆ๋‹ค๋Š” ์ ์—์„œ ๋‹ค๋ฅธ ์ด๋ฏธ์ง• ์‹œ์Šคํ…œ์— ๋น„ํ•ด ์žฅ์ ์ด ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด๋Ÿฌํ•œ ์‹œ์Šคํ…œ์€ ์ œํ•œ๋œ ์˜์—ญ์—์„œ๋งŒ ์ƒ์—…์ ์œผ๋กœ ์ ์šฉ๋˜๊ณ  ์žˆ๋‹ค. ์ด๋ฏธ์ง€์˜ ํ’ˆ์งˆ๊ณผ ํฌ๊ธฐ์— ๋”ฐ๋ผ ์‹œ์Šคํ…œ์ด ๋งค์šฐ ๊ณ ๊ฐ€์ผ ์ˆ˜ ์žˆ์œผ๋ฉฐ ์ด๋ฏธ์ง€๋ฅผ ์‹ค์‹œ๊ฐ„์œผ๋กœ ์ œ๊ณตํ•  ์ˆ˜ ์—†๋Š” ํ˜„ํ™ฉ์ด๋‹ค. ํ˜„์žฌ์˜ micro/mmW ์ด๋ฏธ์ง• ์‹œ์Šคํ…œ์˜ ๋ฌธ์ œ๋ฅผ ๊ทน๋ณตํ•˜๋ ค๋ฉด ์ƒˆ๋กœ์šด ์‹œ์Šคํ…œ ๊ฐœ๋…์„ ์ œ์•ˆํ•˜๊ณ  ํ…Œ์ŠคํŠธ๋ฒ ๋“œ๋ฅผ ์‹œ์—ฐํ•˜์—ฌ ์ž ์žฌ์ ์ธ ์ด์ ๊ณผ ์œ„ํ—˜์„ ์ž…์ฆํ•˜๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•˜๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” Ku-band์™€ 1D-MIMO ์–ด๋ ˆ์ด๋ฅผ ์ด์šฉํ•œ ๊ด‘๋Œ€์—ญ micro/mmW ์ด๋ฏธ์ง• ์‹œ์Šคํ…œ์ธ Ku1DMIC๋ฅผ ์ œ์•ˆํ•˜์—ฌ ์œ„์™€ ๊ฐ™์€ ๋ฌธ์ œ์ ์„ ๊ทน๋ณตํ•  ์ˆ˜ ์žˆ๋‹ค. ๋น„์šฉ ํšจ์œจ์ ์ธ 3์ฐจ์› ์˜์ƒํ™” ๊ธฐ๋Šฅ์„ ์œ„ํ•ด Ku1DMIC๋Š” 1D-MIMO ๋ฐฐ์—ด ๊ธฐ์ˆ ๊ณผ ISAR(Inverse Synthetic Aperture Radar) ๊ธฐ์ˆ ์„ ์‚ฌ์šฉํ•œ๋‹ค. ๋™์‹œ์— Ku1DMIC๋Š” ์ฃผํŒŒ์ˆ˜ ๋ณ€์กฐ ์—ฐ์†ํŒŒ (FMCW) ๋ ˆ์ด๋”์™€์˜ ์›ํ™œํ•œ ์ธํ„ฐํŽ˜์ด์Šค์˜ ์‹œ์Šคํ…œ ์ˆ˜์ค€ ์„ค๊ณ„๋ฅผ ํ†ตํ•ด ์‹ค์‹œ๊ฐ„ ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘์„ ์ง€์›ํ•œ๋‹ค. Ku1DMIC๋ฅผ ์‚ฌ์šฉํ•œ 3์ฐจ์› ์˜์ƒํ™”์˜ ๊ตฌํ˜„ ๋ฐ ์‹ค์‹œ๊ฐ„ ๊ธฐ๋Šฅ์˜ ๊ฐ€๋Šฅ์„ฑ์„ ๋ณด์—ฌ์ฃผ๊ธฐ ์œ„ํ•ด, 2์ฐจ์› ์˜์ƒํ™”๋ฅผ ์œ„ํ•œ 1D-MIMO RSA๊ณผ 3์ฐจ์› ์˜์ƒํ™”๋ฅผ ์œ„ํ•œ 1D-MIMO-ISAR RSA๊ฐ€ ์ œ์•ˆ๋˜๊ณ  Ku1DMIC์—์„œ ๊ตฌํ˜„๋œ๋‹ค. ๋”ฐ๋ผ์„œ, ๋ณธ ํ•™์œ„ ๋…ผ๋ฌธ์˜ ์ฃผ์š” ๊ธฐ์—ฌ๋Š” Ku-band 1D-MIMO ๋ฐฐ์—ด ๊ธฐ๋ฐ˜ ์˜์ƒํ™” ์‹œ์Šคํ…œ ํ”„๋กœํ† ํƒ€์ž…์„ ๊ฐœ๋ฐœ ๋ฐ ํ…Œ์ŠคํŠธํ•˜๊ณ , ISAR ๊ธฐ๋ฐ˜ 3์ฐจ์› ์˜์ƒํ™” ๊ธฐ๋Šฅ์„ ๊ฒ€์‚ฌํ•˜๊ณ , ์‹ค์‹œ๊ฐ„ 3์ฐจ์› ์˜์ƒํ™” ๊ฐ€๋Šฅ์„ฑ์„ ์กฐ์‚ฌํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ์ด์— ๋Œ€ํ•œ ์„ธ๋ถ€์ ์ธ ๊ธฐ์—ฌ ํ•ญ๋ชฉ์€ ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค. ์ฒซ์งธ, ์‹ค์‹œ๊ฐ„ 2D ๊ทผ๊ฑฐ๋ฆฌ์žฅ ์ด๋ฏธ์ง• ๊ธฐ๋Šฅ์„ ๊ฐ–์ถ˜ Ku ๋Œ€์—ญ MIMO ์ฃผํŒŒ์ˆ˜ ๋ณ€์กฐ ์—ฐ์†ํŒŒ(FMCW) ๋ ˆ์ด๋” ์‹คํ—˜ ํ”Œ๋žซํผ์ธ Ku1DMIC๋ฅผ ์ œ์‹œํ•œ๋‹ค. ์ œ์•ˆํ•˜๋Š” ์‹œ์Šคํ…œ์€ ์ œํ•œ๋œ ์ˆ˜์˜ ์•ˆํ…Œ๋‚˜์—์„œ ๋” ๋„“์€ ์กฐ๋ช… ์˜์—ญ์„ ์ปค๋ฒ„ํ•˜๊ธฐ ์œ„ํ•ด Ku ๋Œ€์—ญ์„ ์‚ฌ์šฉํ•˜๊ณ  ๊ณ ํ•ด์ƒ๋„ ์ด๋ฏธ์ง€๋ฅผ ์ œ๊ณตํ•˜๋ฉด์„œ ๋น ๋ฅธ ๋ ˆ์ด๋” ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘์„ ์œ„ํ•ด ๊ณ ์† ๋žจํ”„ ๋ฐ ๊ด‘๋Œ€์—ญ FMCW ํŒŒํ˜•์„ ์‚ฌ์šฉํ•œ๋‹ค. ํ”Œ๋žซํผ์˜ ํ•ต์‹ฌ ์„ค๊ณ„ ์›์น™์€ ์•ˆ์ •์„ฑ, ์žฌ๊ตฌ์„ฑ ๊ฐ€๋Šฅ์„ฑ ๋ฐ ์‹ค์‹œ๊ฐ„ ๊ธฐ๋Šฅ์œผ๋กœ ์‹œ์Šคํ…œ์˜ ๊ฐ•์ ๊ณผ ์•ฝ์ ์„ ๊ด‘๋ฒ”์œ„ํ•˜๊ฒŒ ํƒ์ƒ‰ํ•œ๋‹ค. ์„ค๊ณ„ ์›์น™์„ ๋งŒ์กฑ์‹œํ‚ค๊ธฐ ์œ„ํ•ด AMD-Xilinx UltraScale+ RFSoC(Radio Frequency System on Chip)๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ๋””์ง€ํ„ธ ์ง€์› ํ”Œ๋žซํผ์„ ์ œ์•ˆํ•˜๊ณ  ๊ตฌํ˜„ํ•œ๋‹ค. ์‹ค์‹œ๊ฐ„ 2D ์ด๋ฏธ์ง•์— ๋Œ€ํ•œ ์‹คํ—˜์  ์กฐ์‚ฌ๋Š” ์ดˆ๋‹น ์•ฝ 60ํ”„๋ ˆ์ž„์—์„œ ๋น„๋””์˜ค ์†๋„ ์ด๋ฏธ์ง•์˜ ๋Šฅ๋ ฅ์„ ์ž…์ฆํ–ˆ๋‹ค. ๋‘˜์งธ, ์˜์ƒ ํ’ˆ์งˆ ํ–ฅ์ƒ์„ ์œ„ํ•œ ํŒŒํ˜• ๋””์ง€ํ„ธ ์ „์น˜์™œ๊ณก(DPD) ๋ฐฉ๋ฒ•๊ณผ ๋ณด์ • ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ์ตœ์ ํ™”๋œ ํŒŒํ˜• ๋ฐœ์ƒ๊ธฐ์˜ ๋„์›€์œผ๋กœ ๊นจ๋—ํ•œ FMCW ํŒŒํ˜•์ด ์ƒ์„ฑ๋˜๋”๋ผ๋„ ํŠนํžˆ ํ”Œ๋žซํผ์˜ RF ํ•˜์œ„ ์‹œ์Šคํ…œ์—์„œ ์‹ ํ˜ธ๋Š” ํ•„์—ฐ์ ์œผ๋กœ ์™œ๊ณก์„ ๊ฒช๊ฒŒ๋œ๋‹ค. ๊ทผ๊ฑฐ๋ฆฌ ์˜์ƒํ™” ์‘์šฉ ๋ถ„์•ผ์—์„œ๋Š” ํŒŒํ˜• DPD๋Š” ๊ด‘๋Œ€์—ญ FMCW ๋ ˆ์ด๋” ์‹œ์Šคํ…œ์˜ ์™œ๊ณก์„ ์–ต์ œํ•˜๋Š” ๋ฐ ํšจ๊ณผ์ ์ด์ง€ ์•Š๋‹ค. ์ด ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด Ku1DMIC์—์„œ ํŒŒํ˜• DPD๊ฐ€ ์œ ํšจํ•˜๋„๋ก LO-DPD ์•„ํ‚คํ…์ฒ˜์™€ ์ด์ง„ ํƒ์ƒ‰ ๊ธฐ๋ฐ˜ DPD ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•œ๋‹ค. ๋˜ํ•œ, ํŒŒํ˜• DPD๋กœ ์ œ๊ฑฐํ•  ์ˆ˜ ์—†๋Š” ๋‚˜๋จธ์ง€ ์˜ค๋ฅ˜๋ฅผ ๋ณด์ƒํ•˜๊ธฐ ์œ„ํ•ด ์ด๋ฏธ์ง€ ์˜์—ญ ์ตœ์ ํ™” ๋ณด์ • ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ๋…ธ์ด์ฆˆ ๋ฐ ํด๋Ÿฌํ„ฐ ์‹ ํ˜ธ์™€ ๊ฐ™์€ ๋‹ค์–‘ํ•œ ์›์น˜ ์•Š๋Š” ์‹ ํ˜ธ์— ๋Œ€ํ•œ ๊ฒฌ๊ณ ์„ฑ์„ ์œ„ํ•ด ์ผ๋ฐ˜ํ™”๋œ Tikhonov ์ •๊ทœํ™” ๋ฐ ์ „์ฒด ๋ณ€๋™(TV) ์ •๊ทœํ™”๋ผ๋Š” ๋‘ ๊ฐ€์ง€ ์ •๊ทœํ™”๋œ ์ตœ์†Œ ์ž์Šน ๋ฌธ์ œ๋ฅผ ์ ์šฉ ํ›„ ๋น„๊ตํ•œ๋‹ค. ๋‹ค์–‘ํ•œ 2์ฐจ์› ์˜์ƒํ™” ์‹คํ—˜์„ ํ†ตํ•ด ๋‘ ๋ฐฉ๋ฒ• ๋ชจ๋‘ ๋ถ€์—ฝ ๋ ˆ๋ฒจ์„ ์ค„์—ฌ ํ™”์งˆ์„ ํ–ฅ์ƒ์‹œํ‚ฌ ์ˆ˜ ์žˆ์Œ์„ ํ™•์ธํ•œ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ISAR ๊ธฐ๋ฒ•์„ 2์ฐจ์› ์˜์ƒ ํ”Œ๋žซํผ์— ์ ์šฉํ•˜์—ฌ ์‹ค์‹œ๊ฐ„ 3์ฐจ์› ์˜์ƒ์„ ๊ตฌํ˜„ํ•˜๊ธฐ ์œ„ํ•œ ์—ฐ๊ตฌ๋ฅผ ์ง„ํ–‰ํ•œ๋‹ค. 1D-MIMO-ISAR ๊ตฌ์„ฑ์—์„œ ์‹ค์‹œ๊ฐ„ 3D ์ด๋ฏธ์ง•์˜ ๊ตฌํ˜„์€ ์ด๋Ÿฌํ•œ ๊ตฌ์„ฑ์ด 3D ์ด๋ฏธ์ง• ์‹œ์Šคํ…œ์˜ ๋น„์šฉ์„ ํฌ๊ฒŒ ์ค„์ผ ์ˆ˜ ์žˆ๋‹ค๋Š” ์ ์—์„œ ์˜ํ–ฅ๋ ฅ์ด ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ ์ด ๋…ผ๋ฌธ์—์„œ๋Š” 1D-MIMO-ISAR ๊ตฌ์„ฑ์— ๋Œ€ํ•œ ์ด๋ฏธ์ง• ์žฌ๊ตฌ์„ฑ์„ ๊ฐ€์†ํ™”ํ•˜๊ธฐ ์œ„ํ•ด 1D-MIMO-ISAR ๋ฒ”์œ„ ์Šคํƒœํ‚น ์•Œ๊ณ ๋ฆฌ์ฆ˜(RSA)์„ ์ œ์•ˆํ•œ๋‹ค. ์ œ์•ˆ๋œ 1D-MIMO-ISAR RSA๋Š” ๋„๋ฆฌ ์•Œ๋ ค์ง„ Back-Projection ์•Œ๊ณ ๋ฆฌ์ฆ˜๊ณผ ๊ฑฐ์˜ ๋™์ผํ•œ ์ด๋ฏธ์ง€ ํ’ˆ์งˆ์„ ์œ ์ง€ํ•˜๋ฉด์„œ๋„ ์ˆ˜๋ฐฑ ๋ฐ€๋ฆฌ์ดˆ ์ด๋‚ด์— ์ด๋ฏธ์ง€๋ฅผ ์žฌ๊ตฌ์„ฑํ•จ์œผ๋กœ์จ ์‹ค์‹œ๊ฐ„ ์˜์ƒํ™”์— ๋Œ€ํ•œ ๊ฐ€๋Šฅ์„ฑ์„ ๋ณด์—ฌ์ค€๋‹ค. ๋˜ํ•œ ๋ฌผ์ฒด๊ฐ€ ์‹œ์•ผ์— ๋“ค์–ด์˜ค๊ณ  ๋‚˜๊ฐ€๋Š” ์‹ค์ œ ์ƒํ™ฉ์„ ๊ณ ๋ คํ•˜๊ธฐ ์œ„ํ•œ ROI ์„ค์ •, ๊ทธ๋ฆฌ๊ณ  ๋ฉ”๋ชจ๋ฆฌ ํ• ๋‹น์— ๋Œ€ํ•œ ์ „๋žต์„ ์„ค๋ช…ํ•œ๋‹ค. ๊ด‘๋ฒ”์œ„ํ•œ ์‹œ๋ฎฌ๋ ˆ์ด์…˜๊ณผ ์‹คํ—˜์„ ํ†ตํ•ด 1D-MIMO-IASR ๊ตฌ์„ฑ ๋ฐ 1D-MIMO-ISAR RSA์˜ ๊ฐ€๋Šฅ์„ฑ๊ณผ ์ž ์žฌ์  ์ด์ ์„ ํ™•์ธํ•œ๋‹ค.1 INTRODUCTION 1 1.1 Microwave and millimeter-wave imaging 1 1.2 Imaging with radar system 2 1.3 Challenges and motivation 5 1.4 Outline of the dissertation 8 2 FUNDAMENTAL OF TWO-DIMENSIONAL IMAGING USING A MIMO RADAR 9 2.1 Signal model 9 2.2 Consideration of waveform 12 2.3 Image reconstruction algorithm 16 2.3.1 Back-projection algorithm 16 2.3.2 1D-MIMO range-migration algorithm 20 2.3.3 1D-MIMO range stacking algorithm 27 2.4 Sampling criteria and resolution 31 2.5 Simulation results 36 3 MIMO-FMCW RADAR IMPLEMENTATION WITH 16 TX - 16 RX ONE- DIMENSIONAL ARRAYS 46 3.1 Wide-band FMCW waveform generator architecture 46 3.2 Overall system architecture 48 3.3 Antenna and RF transceiver module 53 3.4 Wide-band FMCW waveform generator 55 3.5 FPGA-based digital hardware design 63 3.6 System integration and software design 71 3.7 Testing and measurement 75 3.7.1 Chirp waveform measurement 75 3.7.2 Range profile measurement 77 3.7.3 2-D imaging test 79 4 METHODS OF IMAGE QUALITY ENHANCEMENT 84 4.1 Signal model 84 4.2 Digital pre-distortion of chirp signal 86 4.2.1 Proposed DPD hardware system 86 4.2.2 Proposed DPD algorithm 88 4.2.3 Measurement results 90 4.3 Robust calibration method for signal distortion 97 4.3.1 Signal model 98 4.3.2 Problem formulation 99 4.3.3 Measurement results 105 5 THREE-DIMENSIONAL IMAGING USING 1-D ARRAY SYSTEM AND ISAR TECHNIQUE 110 5.1 Formulation for 1D-MIMO-ISAR RSA 111 5.2 Algorithm implementation 114 5.3 Simulation results 120 5.4 Experimental results 122 6 CONCLUSIONS AND FUTURE WORK 127 6.1 Conclusions 127 6.2 Future work 129 6.2.1 Effects of antenna polarization in the Ku-band 129 6.2.2 Forward-looking near-field ISAR configuration 130 6.2.3 Estimation of the movement errors in ISAR configuration 131 Abstract (In Korean) 145 Acknowlegement 148๋ฐ•

    An Ultra-Wideband, Microwave Radar for Measuring Snow Thickness on Sea Ice and Mapping Near-Surface Internal Layers in Polar Firn

    Get PDF
    Sea ice is generally covered with snow, which can vary in thickness from a few centimeters to >1 m. Snow cover acts as a thermal insulator modulating the heat exchange between the ocean and the atmosphere, and it impacts sea-ice growth rates and overall thickness, a key indicator of climate change in polar regions. Snow depth is required to estimate sea-ice thickness using freeboard measurements made with satellite altimeters. The snow cover also acts as a mechanical load that depresses ice freeboard (snow and ice above sea level). Freeboard depression can result in flooding of the snow/ice interface and the formation of a thick slush layer, particularly in the Antarctic sea-ice cover. The Center for Remote Sensing of Ice Sheets (CReSIS) has developed an ultra-wideband, microwave radar capable of operation on long-endurance aircraft to characterize the thickness of snow over sea ice. The low-power, 100mW signal is swept from 2 to 8GHz allowing the air/snow and snow/ ice interfaces to be mapped with 5 c range resolution in snow; this is an improvement over the original system that worked from 2 to 6.5 GHz. From 2009 to 2012, CReSIS successfully operated the radar on the NASA P-3B and DC-8 aircraft to collect data on snow-covered sea ice in the Arctic and Antarctic for NASA Operation IceBridge. The radar was found capable of snow depth retrievals ranging from 10cm to >1 m. We also demonstrated that this radar can be used to map near-surface internal layers in polar firn with fine range resolution. Here we describe the instrument design, characteristics and performance of the radar

    THE HIGH FREQUENCY SURFACE WAVE RADAR SOLUTION FOR VESSEL TRACKING BEYOND THE HORIZON

    Get PDF
    With maximum range of about 200 nautical miles (approx. 370 km) High Frequency Surface Wave Radars (HFSWR) provide unique capability for vessel detection far beyond the horizon without utilization of any moving platforms. Such uniqueness requires design principles unlike those usually used in microwave radar. In this paper the key concepts of HFSWR based on Frequency Modulated Continuous (FMCW) principles are presented. The paper further describes operating principles with focus on signal processing techniques used to extract desired data. The signal processing describes range and Doppler processing but focus is given to the Digital Beamforming (DBF) and Constant False Alarm Rate (CFAR) models. In order to better present the design process, data obtained from the HFSWR sites operating in the Gulf of Guinea are used.ย ย 

    An inclusive survey of contactless wireless sensing: a technology used for remotely monitoring vital signs has the potential to combating COVID-19

    Get PDF
    With the Coronavirus pandemic showing no signs of abating, companies and governments around the world are spending millions of dollars to develop contactless sensor technologies that minimize the need for physical interactions between the patient and healthcare providers. As a result, healthcare research studies are rapidly progressing towards discovering innovative contactless technologies, especially for infants and elderly people who are suffering from chronic diseases that require continuous, real-time control, and monitoring. The fusion between sensing technology and wireless communication has emerged as a strong research candidate choice because wearing sensor devices is not desirable by patients as they cause anxiety and discomfort. Furthermore, physical contact exacerbates the spread of contagious diseases which may lead to catastrophic consequences. For this reason, research has gone towards sensor-less or contactless technology, through sending wireless signals, then analyzing and processing the reflected signals using special techniques such as frequency modulated continuous wave (FMCW) or channel state information (CSI). Therefore, it becomes easy to monitor and measure the subjectโ€™s vital signs remotely without physical contact or asking them to wear sensor devices. In this paper, we overview and explore state-of-the-art research in the field of contactless sensor technology in medicine, where we explain, summarize, and classify a plethora of contactless sensor technologies and techniques with the highest impact on contactless healthcare. Moreover, we overview the enabling hardware technologies as well as discuss the main challenges faced by these systems.This work is funded by the scientific and technological research council of Turkey (TรœBITAK) under grand 119E39

    Modeling Backscattering Behavior of Vulnerable Road Users Based on High-Resolution Radar Measurements

    Get PDF
    Bei der Weiterentwicklung der Technologie des autonomen Fahrens (AD) ist die Beschaffung zuverlรคssiger dreidimensionaler Umgebungsinformationen eine unverzichtbare Aufgabe, um ein sicheres Fahren zu ermรถglichen. Diese Herausforderung kann durch den Einsatz von Fahrzeugradaren zusammen mit optischen Sensoren, z. B. Kameras oder Lidars, bewรคltigt werden, sei es in der Simulation oder in konventionellen Tests auf der StraรŸe. Das Betriebsverhalten von Fahrzeugradaren kann in einer Over-the-Air (OTA) Vehicle-in-the-Loop (ViL) Umgebung genau bewertet werden. Fรผr eine umfassende experimentelle Verifizierung der Fahrzeugradare muss jedoch die Umgebung, insbesondere die gefรคhrdeten Verkehrsteilnehmer (VRUs), mรถglichst realistisch modelliert werden. Moderne Radarsensoren sind in der Lage, hochaufgelรถste Erkennungsinformationen von komplexen Verkehrszielen zu liefern, um diese zu verfolgen. Diese hochauflรถsenden Erkennungsdaten, die die reflektierten Signale von den Streupunkten (SPs) der VRUs enthalten, kรถnnen zur Erzeugung von Rรผckstreumodelle genutzt werden. Darรผber hinaus kann ein realistischeres Rรผckstreumodell der VRUs, insbesondere von Menschen als FuรŸgรคnger oder Radfahrer, durch die Modellierung der Bewegung ihrer Extremitรคten in Verkehrsszenarien erreicht werden. Die Voraussetzung fรผr die Erstellung eines solchen detaillierten Modells in verschiedenen Situationen sind der Radarquerschnitt (RCS) und die Doppler-Signaturen, die sich aus den menschlichen Extremitรคten in einer bewegten Situation ergeben. Diese Daten kรถnnen durch die gesammelten Radardaten aus hochauflรถsenden RCS-Messungen im Radial- und Winkelbereich gewonnen werden, was durch die Analyse der Range-Doppler-Spezifikation der menschlichen Extremitรคten in verschiedenen Bewegungen mรถglich ist. Die entwickelten realistischen Radarmodelle kรถnnen bei der Wellenausbreitung im Radarkanal, bei der Zielerkennung und -klassifizierung sowie bei Datentrainingsalgorithmen zur Validierung und Verifizierung der Kfz-Radarfunktionen eingesetzt werden. AnschlieรŸend kann mit dieser Bewertung die Sicherheit von fortschrittlichen Fahrerassistenzsystemen (ADAS) beurteilt werden. Daher wird in dieser Arbeit ein hochauflรถsendes RCS-Messverfahren vorgeschlagen, um die relevanten SPs verschiedener VRUs mit hoher radialer und winkelmรครŸiger Auflรถsung zu bestimmen. Eine Gruppe unterschiedliche VRUs wird in statischen Situationen gemessen, und die notwendigen Signalverarbeitungsschritte, um die relevanten SPs mit den entsprechenden RCS-Werten zu extrahieren, werden im Detail beschrieben. Wรคhrend der Analyse der gemessenen Daten wird ein Algorithmus entwickelt, um die physischen GrรถรŸen der gemessenen Testpersonen aus dem extrahierten Rรผckstreumodell zu schรคtzen und sie anhand ihrer GrรถรŸe und Statur zu klassifizieren. Zusรคtzlich wird ein Dummy-Mensch vermessen, der eine vergleichbare GrรถรŸe wie die vermessenen Probanden hat. Das extrahierte Rรผckstreuverhalten einer beispielhaften VRU-Gruppe wird fรผr ihre verschiedenen Typen ausgewertet, um die รœbereinstimmung zwischen virtuellen Validierungen und der Realitรคt aufzuzeigen und den Genauigkeitsgrad der Modelle sicherzustellen. In einem weiteren Schritt wird diese hochauflรถsende RCS-Messtechnik mit der Motion Capture Technologie kombiniert, um die Reflektivitรคt der SPs von den menschlichen Kรถrperregionen in verschiedenen Bewegungen zu erfassen und die Radarsignaturen der menschlichen Extremitรคten genau zu schรคtzen. Spezielle Signalverarbeitungsschritte werden eingesetzt, um die Radarsignaturen aus den Messergebnissen des sich bewegenden Menschen zu extrahieren. Diese nachbearbeiteten Daten ermรถglichen es der Technik, die zeitlich variierenden SPs an den Extremitรคten des menschlichen Kรถrpers mit den entsprechenden RCS-Werten und Dopplersignaturen einzufรผhren. Das extrahierte Rรผckstreumodell der VRUs enthรคlt eine Vielzahl von SPs. Daher wird ein Clustering-Algorithmus entwickelt, um die Berechnungskomplexitรคt bei Radarkanalsimulationen durch die Einfรผhrung einiger virtueller Streuzentren (SCs) zu minimieren. Jedes entwickelte virtuelle SCs hat seine eigene spezifische Streueigenschaft

    An ultra-wideband, microwave radar for measuring snow thickness on sea ice and mapping near-surface internal layers in polar firn

    Get PDF
    This is the published version. Copyright 2013 International Glaciological SocietySea ice is generally covered with snow, which can vary in thickness from a few centimeters to >1 m. Snow cover acts as a thermal insulator modulating the heat exchange between the ocean and the atmosphere, and it impacts sea-ice growth rates and overall thickness, a key indicator of climate change in polar regions. Snow depth is required to estimate sea-ice thickness using freeboard measurements made with satellite altimeters. The snow cover also acts as a mechanical load that depresses ice freeboard (snow and ice above sea level). Freeboard depression can result in flooding of the snow/ice interface and the formation of a thick slush layer, particularly in the Antarctic sea-ice cover. The Center for Remote Sensing of Ice Sheets (CReSIS) has developed an ultra-wideband, microwave radar capable of operation on long-endurance aircraft to characterize the thickness of snow over sea ice. The low-power, 100mW signal is swept from 2 to 8GHz allowing the air/snow and snow/ ice interfaces to be mapped with 5 cm range resolution in snow; this is an improvement over the original system that worked from 2 to 6.5 GHz. From 2009 to 2012, CReSIS successfully operated the radar on the NASA P-3B and DC-8 aircraft to collect data on snow-covered sea ice in the Arctic and Antarctic for NASA Operation IceBridge. The radar was found capable of snow depth retrievals ranging from 10cm to >1 m. We also demonstrated that this radar can be used to map near-surface internal layers in polar firn with fine range resolution. Here we describe the instrument design, characteristics and performance of the radar

    Backscattering Behavior of Vulnerable Road Users Based on High-Resolution RCS Measurements

    Get PDF
    Automotive radars, along with optical sensors such as cameras or lidars, offer a reliable way of obtaining the 3-D information about the environment. Of particular interest in autonomous driving (AD) is the reliable detection of particularly vulnerable road users (VRUs). Modern radar sensors are able to detect, distinguish, and track targets with high resolution. Relying on that, a backscattering model of complex traffic targets can be generated from the reflected signals of their scattering points (SPs). These models can be employed in the radar channel simulations for verification methods of advanced driver assistance systems. Therefore, in this work, different persons as the most vital VRUs are measured with high radial and high angular resolution. The necessary signal processing steps are explained in detail for the determination of the relevant SPs. Thus, the corresponding radar cross section (RCS) values can be assigned to certain body regions. In addition to real persons, further measurements are compared with a dummy of the corresponding size. Based on the measurement results, not only accurate models of road users can be derived, but also the measurement results can be employed for calculating wave propagation in traffic scenarios. From the measured SPs, the classification of the persons by size and stature is derived

    Comparison between Trigonometric, and traditional DDS, in 90 nm technology

    Get PDF
    The Direct Digital frequency Synthesizer (DDS) is an architecture largely used for the generation of numeric sine and/or cosine waveforms in different applications. In this work, authors compare two different DDS architectures: the traditional architecture, based on the exploitation of quarter wave symmetry, and the Symonโ€™s DDS (trigonometric DDS) presented in 2002. The two layout configurations have been implemented in 90 nm technology and compared in terms of area, speed and power consumption. Comparisons have been performed in terms of circuital complexity on architectures having the same Spurious Free Dynamic Range (SFDR) and phase resolution. Experiments show that the trigonometric architecture is very efficient in terms of area

    Design and Implementation of a Stepped Frequency Continuous Wave Radar System for Biomedical Applications

    Get PDF
    There is a need to detect vital signs of human (e.g., the respiration and heart-beat rate) with noncontact method in a number of applications such as search and rescue operation (e.g. earthquakes, fire), health monitoring of the elderly, performance monitoring of athletes Ultra-wideband radar system can be utilized for noncontact vital signs monitoring and tracking of various human activities of more than one subject. Therefore, a stepped-frequency continuous wave radar (SFCW) system with wideband performance is designed and implemented for Vital signs detection and fall events monitoring. The design of the SFCW radar system is firstly developed using off-the-shelf discrete components. Later, the system is implemented using surface mount components to make it portable with low cost. The measurement result is proved to be accurate for both heart rate and respiration rate detection within ยฑ5% when compared with contact measurements. Furthermore, an electromagnetic model has been developed using a multi-layer dielectric model of the human subject to validate the experimental results. The agreement between measured and simulated results is good for distances up to 2 m and at various subjectsโ€™ orientations with respect to the radar, even in the presence of more than one subject. The compressive sensing (CS) technique is utilized to reduce the size of the acquired data to levels significantly below the Nyquist threshold. In our demonstration, we use phase information contained in the obtained complex high-resolution range profile (HRRP) to derive the motion characteristics of the human. The obtained data has been successfully utilized for non-contact walk, fall and limping detection and healthcare monitoring. The effectiveness of the proposed method is validated using measured results

    Space weather studies of IONOLAB group

    Get PDF
    IONOLAB is an interdisciplinary research group dedicated for handling the challenges of near earth environment on communication, positioning and remote sensing systems. IONOLAB group contributes to the space weather studies by developing state-of-the-art analysis and imaging techniques. On the website of IONOLAB group, www.ionolab.org, four unique space weather services, namely, IONOLAB-TEC, IRI-PLAS-2015, IRI-PLAS-MAP and IRI-PLAS-STEC, are provided in a user friendly graphical interface unit. Newly developed algorithm for ionospheric tomography, IONOLAB-CIT, provides not only 3-D electron density but also tracking of ionospheric state with high reliability and fidelity. The algorithm for ray tracing through ionosphere, IONOLAB-RAY, provides a simulation environment in all communication bands. The background ionosphere is generated in voxels where IRI-Plas electron density is used to obtain refractive index. One unique feature is the possible update of ionospheric state by insertion of Total Electron Content (TEC) values into IRI-Plas. Both ordinary and extraordinary paths can be traced with high ray and low ray scenarios for any desired date, time and transmitter location. 2-D regional interpolation and mapping algorithm, IONOLAB-MAP, is another tool of IONOLAB group where automatic TEC maps with Kriging algorithm are generated from GPS network with high spatio-temporal resolution. IONOLAB group continues its studies in all aspects of ionospheric and plasmaspheric signal propagation, imaging and mapping. ยฉ 2016 IEEE
    • โ€ฆ
    corecore