46 research outputs found

    Pneumatic muscle actuators within robotic and mechatronic systems

    Get PDF

    Design, Computational Modelling and Experimental Characterization of Bistable Hybrid Soft Actuators for a Controllable-Compliance Joint of an Exoskeleton Rehabilitation Robot

    Get PDF
    This paper presents the mechatronic design of a biorobotic joint with controllable compliance, for innovative applications of “assist-as-needed” robotic rehabilitation mediated by a wearable and soft exoskeleton. The soft actuation of robotic exoskeletons can provide some relevant advantages in terms of controllable compliance, adaptivity and intrinsic safety of the control performance of the robot during the interaction with the patient. Pneumatic Artificial Muscles (PAMs), which belong to the class of soft actuators, can be arranged in antagonistic configuration in order to exploit the variability of their mechanical compliance for the optimal adaptation of the robot performance during therapy. The coupling of an antagonistic configuration of PAMs with a regulation mechanism can achieve, under a customized control strategy, the optimal tuning of the mechanical compliance of the exoskeleton joint over full ranges of actuation pressure and joint rotation. This work presents a novel mechanism, for the optimal regulation of the compliance of the biorobotic joint, which is characterized by a soft and hybrid actuation exploiting the storage/release of the elastic energy by bistable Von Mises elastic trusses. The contribution from elastic Von Mises structure can improve both the mechanical response of the soft pneumatic bellows actuating the regulation mechanism and the intrinsic safety of the whole mechanism. A comprehensive set of design steps is presented here, including the optimization of the geometry of the pneumatic bellows, the fabrication process through 3D printing of the mechanism and some experimental tests devoted to the characterization of the hybrid soft actuation. The experimental tests replicated the main operating conditions of the regulation mechanism; the advantages arising from the bistable hybrid soft actuation were evaluated in terms of static and dynamic performance, e.g., pressure and force transition thresholds of the bistable mechanism, linearity and hysteresis of the actuator response

    Compliance adaptation of an intrinsically soft ankle rehabilitation robot driven by pneumatic muscles

    Get PDF
    Pneumatic muscles (PMs)-driven robots become more and more popular in medical and rehabilitation field as the actuators are intrinsically complaint and thus are safer for patients than traditional rigid robots. This paper proposes a new compliance adaptation method of a soft ankle rehabilitation robot that is driven by four pneumatic muscles enabling three rotational movement degrees of freedom (DoFs). The stiffness of a PM is dominated by the nominal pressure. It is possible to control the robot joint compliance independently of the robot movement in task space. The controller is designed in joint space to regulate the compliance property of the soft robot by tuning the stiffness of each active link. Experiments in actual environment were conducted to verify the control scheme and results show that the robot compliance can be adjusted when provided changing nominal pressures and the robot assistance output can be regulated, which provides a feasible solution to implement the patient-cooperative training strategy

    A Biomimetically Derived Method for Control of Span-Wise Morphing Wings

    Get PDF
    © 2022 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. This is the accepted manuscript version of a conference paper which has been published in final form at https://doi.org/10.2514/6.2022-1986The development of novel morphing wings follows common milestones. This work presents the modelling and control of the recently proposed avian wing span-wise morphing concept. The concept primarily consists of three structural members heavily mimicking the skeletal structure birds employ for flight. This structure is actuated, through the range of motion achievable by avian, with the integration of pneumatic artificial muscles (PAMs). Arranged in antagonistic pairs, the PAMs actuate an effective shoulder joint between the aircraft and wing through 90⁰. As well as two joints along the wing through 110⁰, allowing a span-wise reduction of 75% the fully extended span. This adaptive structure is capable of supporting several different aerofoil geometries for application specific aircraft. Initially proposed with a biomimetic derived wing profile more traditional and predictable NACA aerofoils have been applied. In this paper the avian wing span-wise morphing concept is modelled and with the application of inverse kinematics a control system is derived to allow simplified span-length positioning. Similarly, desired wing area is also presented as an input for the system. The model is based on PAM force models to individually model the pneumatic system driving each joint. The mechanical system of each joint is subsequently used to produce a direct kinematic model for wing tip position, and the inverse determined for control. The validity of both the model and system are experimentally tested on a fixed semi-span prototype rig of the morphing concept. Feedback is then introduced. Potentiometers are embedded into each joint to provide joint angle feedback. The tuning of the system is then presented for different dynamic responses. Alongside this development experiments have been conducted into the kinematics avian employ in flight and the flight dynamics they enable. These results are presented and directly applied as parameters for the proposed system. Span morphing retraction and extension rates determined from in vivo flight data of avian, including the Common buzzard (Buteo buteo) and Harris Hawk (Parabuteo unicinctus), are achieved using the avian wing span-wise morphing concept and the proposed control system. These dynamics are used to infer the parameters of an aircraft with the concept wing used as control surfaces

    Design of a pneumatic muscle based continuum robot with embedded tendons

    Get PDF
    © 1996-2012 IEEE. Continuum robots have attracted increasing focus in recent years due to their intrinsic compliance that allows for dexterous and safe movements. However, the inherent compliance in such systems reduces the structural stiffness, and therefore leads to the issue of reduced positioning accuracy. This paper presents the design of a continuum robot employing tendon embedded pneumatic muscles. The pneumatic muscles are used to achieve large-scale movements for preliminary positioning, while the tendons are used for fine adjustment of position. Such hybrid actuation offers the potential to improve the accuracy of the robotic system, while maintaining large displacement capabilities. A three-dimensional dynamic model of the robot is presented using a mass-damper-spring-based network, in which elastic deformation, actuating forces, and external forces are taken into account. The design and dynamic model of the robot are then validated experimentally with the help of an electromagnetic tracking system

    Pneumatic Artificial Muscle Driven Trailing Edge Flaps For Active Rotors

    Get PDF
    This research focuses on the development of an active rotor system capable of primary control and vibration reduction for rotorcraft. The objective is to investigate the feasibility of a novel Trailing Edge Flap (TEF) actuation system driven by Pneumatic Artificial Muscles (PAMs). A significant design effort led to a series of experimental apparatuses which tested various aspects of the performance of the actuators themselves and of TEF systems driven by them. Analytical models were developed in parallel to predict the quasistatic and dynamic behavior of these systems. Initial testing of a prototype blade section with an integrated PAM driven TEF proved the viability of the concept through successful benchtop testing under simulated M = 0.3 loading and open jet wind tunnel tests under airspeeds up to M = 0.13. This prototype showed the ability of PAM actuators to generate significant flap deflections over the bandwidth of interest for primary control and vibration reduction on a rotorcraft. It also identified the importance of high pneumatic system mass flow rate for maintaining performance at higher operating frequencies. Research into the development and improvement of PAM actuators centered around a new manufacturing technique which was invented to directly address the weaknesses of previous designs. Detailed finite element model (FEM) analysis of the design allowed for the mitigation of stress concentrations, leading to increased strength. Tensile testing of the swaged actuators showed a factor of safety over 5, and burst pressure testing showed a factor of safety of 3. Over 120,000,000 load cycles were applied to the actuators without failure. Characterization testing before, during, and after the fatigue tests showed no reduction in PAM performance. Wind tunnel testing of a full scale Bell 407 blade retrofitted with a PAM TEF system showed excellent control authority. At the maximum wind tunnel test speed of M = 0.3 and a derated PAM operating pressure of 28 psi, 18.8° half-peak-to-peak flap deflections were achieved at 1/rev (7 Hz), and 17.1° of half-peak-to-peak flap deflection was still available at 5/rev (35 Hz). A quasistatic system model was developed which combined PAM forces, kinematics and flap aerodynamics to predict flap deflection amplitudes. This model agreed well with experimental data. Whirl testing of a sub-span whirl rig under full scale loading conditions showed the ability of PAM TEF systems to operate under full scale levels of centrifugal (CF), aerodynamic, and inertia loading. A commercial pneumatic rotary union was used to provide air in the rotating frame. Extrapolation of the results to 100% of CF acceleration predicts 15.4° of half-peak-to-peak flap deflection at 1/rev (7 Hz), and 7.7° of half-peak-to-peak flap deflection at 5/rev (35 Hz). A dynamic model was developed which successfully predicted the time domain behavior of the PAM actuators and PAM TEF system. This model includes control valve dynamics, frictional tubing losses, pressure dynamics, PAM forces, mechanism kinematics, aerodynamic hinge moments, system stiffness, damping, and inertia to solve for the rotational dynamics of the flap. Control system development led to a closed loop control system for PAM TEF systems capable of tracking complex, multi-sinusoid flap deflections representative of a combined primary control and vibration reduction flap actuation scheme. This research shows the promise that PAM actuators have as drivers for trailing edge flaps on active helicopter rotors. The robustness, ease of integration, control authority and tracking accuracy of these actuators have been established, thereby motivating further research
    corecore