126 research outputs found

    Identification and Rejuvenation of NBTI-Critical Logic Paths in Nanoscale Circuits

    Get PDF
    The Negative Bias Temperature Instability (NBTI) phenomenon is agreed to be one of the main reliability concerns in nanoscale circuits. It increases the threshold voltage of pMOS transistors, thus, slows down signal propagation along logic paths between flip-flops. NBTI may cause intermittent faults and, ultimately, the circuit’s permanent functional failures. In this paper, we propose an innovative NBTI mitigation approach by rejuvenating the nanoscale logic along NBTI-critical paths. The method is based on hierarchical identification of NBTI-critical paths and the generation of rejuvenation stimuli using an Evolutionary Algorithm. A new, fast, yet accurate model for computation of NBTI-induced delays at gate-level is developed. This model is based on intensive SPICE simulations of individual gates. The generated rejuvenation stimuli are used to drive those pMOS transistors to the recovery phase, which are the most critical for the NBTI-induced path delay. It is intended to apply the rejuvenation procedure to the circuit, as an execution overhead, periodically. Experimental results performed on a set of designs demonstrate reduction of NBTI-induced delays by up to two times with an execution overhead of 0.1 % or less. The proposed approach is aimed at extending the reliable lifetime of nanoelectronics

    Design of Negative Bias Temperature Instability (NBTI) Tolerant Register File

    Get PDF
    Degradation of transistor parameter values due to Negative Bias Temperature Instability (NBTI) has emerged as a major reliability problem in current and future technology generations. NBTI Aging of a Static Random Access Memory (SRAM) cell leads to a lower noise margin, thereby increasing the failure rate. The register file, which consists of an array of SRAM cells, can suffer from data loss, leading to a system failure. In this work, we study the source of NBTI stress in an architecture and physical register file. Based on our study, we modified the register file structure to reduce the NBTI degradation and improve the overall system reliability. Having evaluated new register file structures, we find that our techniques substantially improve reliability of the register files. The new register files have small overhead, while in some cases they provide saving in area and power

    Ingress of threshold voltage-triggered hardware trojan in the modern FPGA fabric–detection methodology and mitigation

    Get PDF
    The ageing phenomenon of negative bias temperature instability (NBTI) continues to challenge the dynamic thermal management of modern FPGAs. Increased transistor density leads to thermal accumulation and propagates higher and non-uniform temperature variations across the FPGA. This aggravates the impact of NBTI on key PMOS transistor parameters such as threshold voltage and drain current. Where it ages the transistors, with a successive reduction in FPGA lifetime and reliability, it also challenges its security. The ingress of threshold voltage-triggered hardware Trojan, a stealthy and malicious electronic circuit, in the modern FPGA, is one such potential threat that could exploit NBTI and severely affect its performance. The development of an effective and efficient countermeasure against it is, therefore, highly critical. Accordingly, we present a comprehensive FPGA security scheme, comprising novel elements of hardware Trojan infection, detection, and mitigation, to protect FPGA applications against the hardware Trojan. Built around the threat model of a naval warship’s integrated self-protection system (ISPS), we propose a threshold voltage-triggered hardware Trojan that operates in a threshold voltage region of 0.45V to 0.998V, consuming ultra-low power (10.5nW), and remaining stealthy with an area overhead as low as 1.5% for a 28 nm technology node. The hardware Trojan detection sub-scheme provides a unique lightweight threshold voltage-aware sensor with a detection sensitivity of 0.251mV/nA. With fixed and dynamic ring oscillator-based sensor segments, the precise measurement of frequency and delay variations in response to shifts in the threshold voltage of a PMOS transistor is also proposed. Finally, the FPGA security scheme is reinforced with an online transistor dynamic scaling (OTDS) to mitigate the impact of hardware Trojan through run-time tolerant circuitry capable of identifying critical gates with worst-case drain current degradation

    inSense: A Variation and Fault Tolerant Architecture for Nanoscale Devices

    Get PDF
    Transistor technology scaling has been the driving force in improving the size, speed, and power consumption of digital systems. As devices approach atomic size, however, their reliability and performance are increasingly compromised due to reduced noise margins, difficulties in fabrication, and emergent nano-scale phenomena. Scaled CMOS devices, in particular, suffer from process variations such as random dopant fluctuation (RDF) and line edge roughness (LER), transistor degradation mechanisms such as negative-bias temperature instability (NBTI) and hot-carrier injection (HCI), and increased sensitivity to single event upsets (SEUs). Consequently, future devices may exhibit reduced performance, diminished lifetimes, and poor reliability. This research proposes a variation and fault tolerant architecture, the inSense architecture, as a circuit-level solution to the problems induced by the aforementioned phenomena. The inSense architecture entails augmenting circuits with introspective and sensory capabilities which are able to dynamically detect and compensate for process variations, transistor degradation, and soft errors. This approach creates ``smart\u27\u27 circuits able to function despite the use of unreliable devices and is applicable to current CMOS technology as well as next-generation devices using new materials and structures. Furthermore, this work presents an automated prototype implementation of the inSense architecture targeted to CMOS devices and is evaluated via implementation in ISCAS \u2785 benchmark circuits. The automated prototype implementation is functionally verified and characterized: it is found that error detection capability (with error windows from \approx30-400ps) can be added for less than 2\% area overhead for circuits of non-trivial complexity. Single event transient (SET) detection capability (configurable with target set-points) is found to be functional, although it generally tracks the standard DMR implementation with respect to overheads

    PRITEXT: Processor Reliability Improvement Through Exercise Technique

    Get PDF
    With continuous improvements in CMOS technology, transistor sizes are shrinking aggressively every year. Unfortunately, such deep submicron process technologies are severely degraded by several wearout mechanisms which lead to prolonged operational stress and failure. Negative Bias Temperature Instability (NBTI) is a prominent failure mechanism which degrades the reliability of current semiconductor devices. Improving reliability of processors is necessary for ensuring long operational lifetime which obviates the necessity of mitigating the physical wearout mechanisms. NBTI severely degrades the performance of PMOS transistors in a circuit, when negatively biased, by increasing the threshold voltage leading to critical timing failures over operational lifetime. A lack of activity among the PMOS transistors for long duration leads to a steady increase in threshold voltage Vth. Interestingly, NBTI stress can be recovered by removing the negative bias using appropriate input vectors. Exercising the dormant critical components in the Processor has been proved to reduce the NBTI stress. We use a novel methodology to generate a minimal set of deterministic input vectors which we show to be effective in reducing the NBTI wearout in a superscalar processor core. We then propose and evaluate a new technique PRITEXT, which uses these input vectors in exercise mode to effectively reduce the NBTI stress and improve the operational lifetime of superscalar processors. PRITEXT, which uses Input Vector Control, leads to a 4.5x lifetime improvement of superscalar processor on average with a maximum lifetime improvement of 12.7x

    Efficient Estimation of Reliability Metrics for Circuits in Deca-Nanometer Nodes

    Get PDF
    51 σ.Καθώς η τεχνολογία οδηγεί στη κατασκευή τρανζίστορ ολοένα και μικρότερων διαστάσεων, έχουν εμφανιστεί αρκετά φαινόμενα που επηρεάζουν την αξιοπιστία των ολοκληρωμένων κυκλωμάτων. Ένα από αυτά τα φαινόμενα ονομάζεται "Bias Temperature Instability", αποτελεί σημαντικό κίνδυνο για την αξιοπιστία των ολοκληρωμένων κυκλωμάτων και έχει παρατηρηθεί εδώ και πάνω από 30 χρόνια. Το πρώτο μοντέλο που προσπάθησε να εξηγήσει αυτό το φαινόμενο εμφανίστηκε πριν από 30 περίπου χρόνια, βασίστηκε στη διάχυση υδρογόνου και ως εκ τούτου ονομάστηκε "Reaction-Diffusion model". Πριν από μερικά χρόνια δημιουργήθηκε ένα νέο ατομιστικό μοντέλο το οποίο βασίζεται κυρίως στην εμφάνιση ελαττωμάτων στο διηλεκτρικό μεταξύ της πύλης και του καναλιού των FET τρανζίστορ. Μελετώντας κανείς τη βιβλιογραφία που αφορά στο ατομιστικό αυτό μοντέλο, μπορεί να συναντήσει εργαλεία που προσομοιώνουν με ακρίβεια το μοντέλο αλλά δυστυχώς απαιτούν αρκετό χρόνο για να εκτελεστούν, κάτι το οποίο τα καθιστά απαγορευτικά για εκτενή χρήση. Παράλληλα, υπάρχουν εργαλεία βασισμένα στο μοντέλο της διάχυσης τα οποία βέβαια αδυνατούν να παράξουν σωστά και λεπτομερή αποτελέσματα, κυρίως σε τεχνολογίες μικρών διαστάσεων. Η παρούσα λοιπόν διπλωματική εργασία παρουσιάζει τα αποτελέσματα ενός νέου και καινοτόμου εργαλείου το οποίο βασίζεται στο ατομιστικό μοντέλο, ωστόσο προσομοιώνει αποδοτικά αλλά και με ακρίβεια το φαινόμενο της γήρανσης. Ένα αντιπροσωπευτικό μονοπάτι στατικής μνήμης (SRAM) θα χρησιμοποιηθεί ως παράδειγμα της λειτουργίας του μοντέλου ενώ παράλληλα θα υπολογισθούν, με βάση τα αποτελέσματα των προσομοιώσεων αυτών, μετρικές, σημαντικές για το χαρακτηρισμό της απόδοσης και αξιοπιστίας του κυκλώματος, ενώ παράλληλα θα μελετηθούν λεπτομερώς και οι σχέσεις που τις συνδέουν.In modern technologies of integrated circuits (IC) and with the downscaling of device dimensions, various degradation modes constitute major reliability concerns. Bias Temperature Instability (BTI) is a representative example, posing as a significant reliability threat in Field-Effect Transistor (FET) technologies and has been known for more than 30 years. At first, the model that tried to explain this phenomenon was based on the Reaction-Diffusion (RD) theory and was developed nearly 30 years ago. Recently, an atomistic model has been proposed, that enables the modeling of BTI in modern technologies. By observing the amount of software designed to simulate the BTI degradation, tools can be found that are based on the atomistic theory but are computationally prohibitive when it comes to simulating complex circuits consisting of a large number of devices. Tools based on the RD model are unable to accurately capture the BTI-induced degradation, especially in devices with small dimensions. The current thesis is appropriately positioned since it discusses a novel simulation framework that is efficient yet highly accurate. A subset of an embedded Static Random Access Memory (SRAM) is used for verification purposes. The estimation of the functional yield of the circuit over three years of operation will be examined as well as other reliability metrics, such as defects per million (DPM), mean time to failure (MTTF) and failures in time (FIT rate). Finally, the interplay between these metrics is discussed and efficient computation methods are proposed for each one.Μιχαήλ Α. Νόλτση
    corecore