357 research outputs found

    Motion Control of Hexapod Robot Using Model-Based Design

    Get PDF
    Six-legged robots, also referred to as hexapods, can have very complex locomotion patterns and provide the means of moving on terrain where wheeled robots might fail. This thesis demonstrates the approach of using Model-Based Design to create control of such a hexapod. The project comprises the whole range from choosing of hardware, creating CAD models, development in MATLAB/Simulink and code generation. By having a computer model of the robot, development of locomotion patterns can be done in a virtual environment before tested on the hardware. Leg movement is implemented as algorithms to determine leg movement order, swing trajectories, body height alteration and balancing. Feedback from the environment is implemented as a internal measurement unit that measures body angles using sensor fusion. The thesis has resulted in successful creation of a hexapod platform for locomotion development through Model-Based Design. Both a virtual hexapod in Sim-Mechanics and a hardware hexapod is created and code generation to the hardware from the development environment is fully supported. Results include successful implementation of hexapod movement and the walking algorithm has the ability to walk on a flat surface, rotate and alter the body height. Implementation also contains a successful balancing mode for the hexapod whereas it is able to keep the main body level while the floor angle is altered

    Parallel Manipulators

    Get PDF
    In recent years, parallel kinematics mechanisms have attracted a lot of attention from the academic and industrial communities due to potential applications not only as robot manipulators but also as machine tools. Generally, the criteria used to compare the performance of traditional serial robots and parallel robots are the workspace, the ratio between the payload and the robot mass, accuracy, and dynamic behaviour. In addition to the reduced coupling effect between joints, parallel robots bring the benefits of much higher payload-robot mass ratios, superior accuracy and greater stiffness; qualities which lead to better dynamic performance. The main drawback with parallel robots is the relatively small workspace. A great deal of research on parallel robots has been carried out worldwide, and a large number of parallel mechanism systems have been built for various applications, such as remote handling, machine tools, medical robots, simulators, micro-robots, and humanoid robots. This book opens a window to exceptional research and development work on parallel mechanisms contributed by authors from around the world. Through this window the reader can get a good view of current parallel robot research and applications

    An Overview of Kinematic and Calibration Models Using Internal/External Sensors or Constraints to Improve the Behavior of Spatial Parallel Mechanisms

    Get PDF
    This paper presents an overview of the literature on kinematic and calibration models of parallel mechanisms, the influence of sensors in the mechanism accuracy and parallel mechanisms used as sensors. The most relevant classifications to obtain and solve kinematic models and to identify geometric and non-geometric parameters in the calibration of parallel robots are discussed, examining the advantages and disadvantages of each method, presenting new trends and identifying unsolved problems. This overview tries to answer and show the solutions developed by the most up-to-date research to some of the most frequent questions that appear in the modelling of a parallel mechanism, such as how to measure, the number of sensors and necessary configurations, the type and influence of errors or the number of necessary parameters

    Analytical Workspace, Kinematics, and Foot Force Based Stability of Hexapod Walking Robots

    Get PDF
    Many environments are inaccessible or hazardous for humans. Remaining debris after earthquake and fire, ship hulls, bridge installations, and oil rigs are some examples. For these environments, major effort is being placed into replacing humans with robots for manipulation purposes such as search and rescue, inspection, repair, and maintenance. Mobility, manipulability, and stability are the basic needs for a robot to traverse, maneuver, and manipulate in such irregular and highly obstructed terrain. Hexapod walking robots are as a salient solution because of their extra degrees of mobility, compared to mobile wheeled robots. However, it is essential for any multi-legged walking robot to maintain its stability over the terrain or under external stimuli. For manipulation purposes, the robot must also have a sufficient workspace to satisfy the required manipulability. Therefore, analysis of both workspace and stability becomes very important. An accurate and concise inverse kinematic solution for multi-legged robots is developed and validated. The closed-form solution of lateral and spatial reachable workspace of axially symmetric hexapod walking robots are derived and validated through simulation which aid in the design and optimization of the robot parameters and workspace. To control the stability of the robot, a novel stability margin based on the normal contact forces of the robot is developed and then modified to account for the geometrical and physical attributes of the robot. The margin and its modified version are validated by comparison with a widely known stability criterion through simulated and physical experiments. A control scheme is developed to integrate the workspace and stability of multi-legged walking robots resulting in a bio-inspired reactive control strategy which is validated experimentally

    Image-based Visual Servoing of a Gough-Stewart Parallel Manipulator using Leg Observations

    Get PDF
    International audienceIn this paper, a tight coupling between computer vision and paral- lel robotics is exhibited through the projective line geometry. Indeed, contrary to the usual methodology where the robot is modeled indepen- dently from the control law which will be implemented, we take into ac- count, since the early modeling stage, that vision will be used for con- trol. Hence, kinematic modeling and projective geometry are fused into a control-devoted projective kinematic model. Thus, a novel vision-based kinematic modeling of a Gough-Stewart manipulator is proposed through the image projection of its cylindrical legs. Using this model, a visual ser- voing scheme is presented, where the image projection of the non-rigidly linked legs are servoed, rather than the end-effector pose

    Hibrit artık robot kolu kullanarak yüksek performanslı taşlama işlemi geliştirmesi.

    Get PDF
    Automatic grinding using robot manipulators, requires simultaneous control of the robot endpoint and force interaction between the robot and the constraint surface. In robotic grinding, surface quality can be increased by accurate estimation of grinding forces where significant tool and workpiece deflection occurs. Tool deflection during robotic grinding operation causes geometrical errors in the workpiece cross-section. Also, it makes controlling the grinding cutting depth difficult. Moreover small diameter of the tool in robotic grinding causes different behavior in the grinding process in comparison with the tools that are used by universal grinding machines. In this study, a robotic surface grinding force model is developed in order to predict the normal and tangential grinding forces. A physical model is used based on chip formation energy and sliding energy. To improve the model for robotic grinding operations, a refining term is added. In order to include the stiffness of the tool and setup in the force model, penetration tests are implemented and their results are used in refining term of the force model. The model coefficients are estimated using a linear regression technique. The proposed model is validated by comparing model outputs with experimentally obtained data. Evaluation of the test results demonstrates the effectiveness of the proposed model in predicting surface grinding forces. In this thesis, a method is proposed for calculation of the tool deflection in normal and tangential directions based on grinding force feedback in these directions. Based on calculated values, a real-time tool deflection compensation algorithm is developed and implemented. Implementing surface grinding with constant normal force is a well-known approach for improving surface quality. Tool deflection in the robotic grinding causes orientation between the force sensor reference frame and tool reference frame. This means that the measured normal and tangential forces by the sensor are not actual normal and tangential interaction forces between the tool and workpiece. In order to eliminate this problem, a resultant grinding force control strategy is designed and implemented for a parallel hexapod-robotic light abrasive surface grinding operation. Due to the nonlinear nature of the grinding operation, a supervised fuzzy controller is designed where the reference input is identified by the proposed grinding force model. Evaluation of the experimental results demonstrates significant improvement in grinding operation accuracy using the proposed resultant force control strategy in parallel with a real-time tool deflection compensation algorithm. The final aim of this thesis is to develop a posture optimization strategy for robotic grinding operation using 12 DOF hybrid redundant manipulator. The 12 DOF redundant hybrid manipulator of present study is composed of a 6 DOF serial ABB IRB2000 robot and a 6 DOF PI H-824 hexapod where the parallel hexapod is connected to the end of the serial ABB manipulator. Here the fifth joint (wrist) of the ABB serial manipulator is the weakest joint in the robot, so the computed torque of this joint is selected as the cost function. The aim is to minimize this factor by finding the best configuration of the hybrid manipulator using genetic algorithm approach. For such a purpose, a complete kinematic and dynamic model of the 12 DOF manipulator is developed where the output of the grinding force model is fed into the dynamic model as external reaction forces. The computed torque of the wrist joint is given to the optimization module and new configuration is generated by the module and is given to the dynamic model. This process continues until converge to the minimum computed torque value. Then the optimal configuration is chosen for the grinding operation. The evaluation of this posture optimization approach shows its great ability to decrease the necessary actuating torques of the redundant manipulator joints.Ph.D. - Doctoral Progra

    DEPUSH HexCrawler Improvement Project

    Get PDF
    DEPUSH Technologies purchased the rights to an older six-legged walking robot design and sought help from WPI and HUST students to improve its functionality to better meet the needs of the secondary education market in mainland China. To accomplish this goal, both the mechanical walking system and control system were improved. The mechanical structure was redesigned for three degree of freedom legs and a more robust chassis, while an entirely new control system was utilized to implement full inverse body and walking kinematics. The result was a cutting-edge hexapod, the HexCrawler 2.0, a versatile platform with potential applications in a variety of robotics-related projects and solid foundation for future research on high-level control

    DEPUSH HexCrawler: Mechanical and Control System Improvement

    Get PDF
    The DEPUSH HexCrawler robot has a dated control system and walking mechanism making it unstable and clumsy. DEPUSH asked our team to update the HexCrawler in conjunction with HUST students from Wuhan, China. The team redesigned the robot\u27s chassis and legs to increase mobility and stability, and implemented a powerful control system capable of precisely manipulating the robot\u27s limbs. The resulting product is a 6 Degree-of-Freedom hexapod and accompanying computer interface with applications in a variety of robotics research areas

    Test Frame Design for Characterization of Additive Manufacturing Compliant Materials

    Get PDF
    With the application of using surrogate models with General Purpose Graphics Processing (GPGPU) computing to meet the need for “real-time” characterization of nonlinear anisotropic material systems and the growing work of using multiaxial robotic test frames for material characterization, there has been a solution for a specific application towards additive manufacturing materials, specifically polymers. Traditional testing using uniaxial and biaxial test machines has proven insufficient in characterizing the material properties of additive manufacturing materials, therefore developing a need for a multiaxial testing machine for characterization that can dynamically excite strain states for a more in-depth look at the material properties. This design report presents the design of a multiaxial robotic test frame that incorporates a Stewart-Gough (SG) platform design to allow 6 degrees-of-freedom for multiple and combined loading applications. This solution is the next generation multiaxial machine focusing on additive manufacturing materials, specifically polymers. The problem statement is the following: Design and fabricate a multiaxial robotic test frame that can test additive manufacturing materials, focusing on polymers and some metals, in 6 degrees-of-freedom while improving on performance and cost over the CSM design

    Automation and Robotics: Latest Achievements, Challenges and Prospects

    Get PDF
    This SI presents the latest achievements, challenges and prospects for drives, actuators, sensors, controls and robot navigation with reverse validation and applications in the field of industrial automation and robotics. Automation, supported by robotics, can effectively speed up and improve production. The industrialization of complex mechatronic components, especially robots, requires a large number of special processes already in the pre-production stage provided by modelling and simulation. This area of research from the very beginning includes drives, process technology, actuators, sensors, control systems and all connections in mechatronic systems. Automation and robotics form broad-spectrum areas of research, which are tightly interconnected. To reduce costs in the pre-production stage and to reduce production preparation time, it is necessary to solve complex tasks in the form of simulation with the use of standard software products and new technologies that allow, for example, machine vision and other imaging tools to examine new physical contexts, dependencies and connections
    corecore