11 research outputs found

    Highly Resolved Synthetic Aperture Radar with Beam Steering

    Get PDF
    Diese Arbeit beschĂ€ftigt sich mit einem hochauflösenden Radar mit synthetischer Apertur. Der erste Teil dieser Arbeit beschreibt mögliche Auswirkungen verschiedener Effekte in dem EmpfĂ€nger des High-Resolution Wide-Swath SAR (HRWS SAR) Systems. DarĂŒber hinaus wird ein Konzept zu Reduktion von Quantisierungsbits in Systemen mit mehreren EmpfangskanĂ€len untersucht. Der zweite Teil der Arbeit betrifft die Datenverarbeitung eines hochauflösenden SAR-Systems in Sliding Spotlight Mode

    Highly Resolved Synthetic Aperture Radar with Beam Steering

    Get PDF
    The present work deals with a highly resolved radar with a synthetic aperture (synthetic aperture radar - SAR), which uses a beam steering to improve performance. The first part of this work deals with the influence of various effects occurring in the hardware of the High-Resolution Wide-Swath SAR (HRWS SAR) system. A special focus was set to single bit quantization in multi-channel receiver. The second part of this work describes SAR processors for Sliding Spotlight mode

     Ocean Remote Sensing with Synthetic Aperture Radar

    Get PDF
    The ocean covers approximately 71% of the Earth’s surface, 90% of the biosphere and contains 97% of Earth’s water. The Synthetic Aperture Radar (SAR) can image the ocean surface in all weather conditions and day or night. SAR remote sensing on ocean and coastal monitoring has become a research hotspot in geoscience and remote sensing. This book—Progress in SAR Oceanography—provides an update of the current state of the science on ocean remote sensing with SAR. Overall, the book presents a variety of marine applications, such as, oceanic surface and internal waves, wind, bathymetry, oil spill, coastline and intertidal zone classification, ship and other man-made objects’ detection, as well as remotely sensed data assimilation. The book is aimed at a wide audience, ranging from graduate students, university teachers and working scientists to policy makers and managers. Efforts have been made to highlight general principles as well as the state-of-the-art technologies in the field of SAR Oceanography

    Innovative Adaptive Techniques for Multi Channel Spaceborne SAR Systems

    Get PDF
    Synthetic Aperture Radar (SAR) is a well-known technology which allows to coherently combine multiple returns from (typically) ground-based targets from a moving radar mounted either on an airborne or on a space-borne vehicle. The relative motion between the targets on ground and the platform causes a Doppler effect, which is exploited to discriminate along-track positions of targets themselves. In addition, as most of conventional radar, a pulsed wide-band waveform is transmitted periodically, thus allowing even a radar discrimination capability in the range direction (i.e. in distance). For side-looking acquisition geometries, the along-track and the range directions are almost orthogonal, so that the two dimensional target discrimination capabiliy results in the possibility to produce images of the illuminated area on ground. A side-looking geometry consists in the radar antenna to be, either mechanically or electronically, oriented perpendicular to the observed area. Nowadays technology allows discrimination capability (also referred to as resolution) in both alongtrack and range directions in the order of few tenths of centimeters. Since the SAR is a microwave active sensor, this technology assure the possibility to produce images of the terrain independently of the sunlight illumination and/or weather conditions. This makes the SAR a very useful instrument for monitoring and mapping both the natural and the artificial activities over the Earth’s surface. Among all the limitations of a single-channel SAR system, this work focuses over some of them which are briefly listed below: a) the performance achievable in terms of resolution are usually paid in terms of system complexity, dimension, mass and cost; b) since the SAR is a coherent active sensor, it is vulnerable to both intentionally and unintentionally radio-frequency interferences which might limit normal system operability; c) since the Doppler effect it is used to discriminate targets (assumed to be stationary) on the ground, this causes an intrinsic ambiguity in the interpretation of backscattered returns from moving targets. These drawbacks can be easily overcome by resorting to a Multi-cannel SAR (M-SAR) system

    Innovative Adaptive Techniques for Multi Channel Spaceborne SAR Systems

    Get PDF
    Synthetic Aperture Radar (SAR) is a well-known technology which allows to coherently combine multiple returns from (typically) ground-based targets from a moving radar mounted either on an airborne or on a space-borne vehicle. The relative motion between the targets on ground and the platform causes a Doppler effect, which is exploited to discriminate along-track positions of targets themselves. In addition, as most of conventional radar, a pulsed wide-band waveform is transmitted periodically, thus allowing even a radar discrimination capability in the range direction (i.e. in distance). For side-looking acquisition geometries, the along-track and the range directions are almost orthogonal, so that the two dimensional target discrimination capabiliy results in the possibility to produce images of the illuminated area on ground. A side-looking geometry consists in the radar antenna to be, either mechanically or electronically, oriented perpendicular to the observed area. Nowadays technology allows discrimination capability (also referred to as resolution) in both alongtrack and range directions in the order of few tenths of centimeters. Since the SAR is a microwave active sensor, this technology assure the possibility to produce images of the terrain independently of the sunlight illumination and/or weather conditions. This makes the SAR a very useful instrument for monitoring and mapping both the natural and the artificial activities over the Earth’s surface. Among all the limitations of a single-channel SAR system, this work focuses over some of them which are briefly listed below: a) the performance achievable in terms of resolution are usually paid in terms of system complexity, dimension, mass and cost; b) since the SAR is a coherent active sensor, it is vulnerable to both intentionally and unintentionally radio-frequency interferences which might limit normal system operability; c) since the Doppler effect it is used to discriminate targets (assumed to be stationary) on the ground, this causes an intrinsic ambiguity in the interpretation of backscattered returns from moving targets. These drawbacks can be easily overcome by resorting to a Multi-cannel SAR (M-SAR) system

    Maritime Moving Target Detection, Tracking and Geocoding Using Range-Compressed Airborne Radar Data

    Get PDF
    Eine regelmĂ€ĂŸige und großflĂ€chige ĂŒberwachung des Schiffsverkehrs gewinnt zunehmend an Bedeutung, vor allem auch um maritime Gefahrenlagen und illegale AktivitĂ€ten rechtzeitig zu erkennen. Heutzutage werden dafĂŒr ĂŒberwiegend das automatische Identifikationssystem (AIS) und stationĂ€re Radarstationen an den KĂŒsten eingesetzt. Luft- und weltraumgestĂŒtzte Radarsensoren, die unabhĂ€ngig vom Wetter und Tageslicht Daten liefern, können die vorgenannten Systeme sehr gut ergĂ€nzen. So können sie beispielsweise Schiffe detektieren, die nicht mit AIS-Transpondern ausgestattet sind oder die sich außerhalb der Reichweite der stationĂ€ren AIS- und Radarstationen befinden. LuftgestĂŒtzte Radarsensoren ermöglichen eine quasi-kontinuierliche Beobachtung von rĂ€umlich begrenzten Gebieten. Im Gegensatz dazu bieten weltraumgestĂŒtzte Radare eine große rĂ€umliche Abdeckung, haben aber den Nachteil einer geringeren temporalen Abdeckung. In dieser Dissertation wird ein umfassendes Konzept fĂŒr die Verarbeitung von Radardaten fĂŒr die Schiffsverkehr-ĂŒberwachung mit luftgestĂŒtzten Radarsensoren vorgestellt. Die Hauptkomponenten dieses Konzepts sind die Detektion, das Tracking, die Geokodierung, die Bildgebung und die Fusion mit AIS-Daten. Im Rahmen der Dissertation wurden neuartige Algorithmen fĂŒr die ersten drei Komponenten entwickelt. Die Algorithmen sind so aufgebaut, dass sie sich prinzipiell fĂŒr zukĂŒnftige Echtzeitanwendungen eignen, die eine Verarbeitung an Bord der Radarplattform erfordern. DarĂŒber hinaus eignen sich die Algorithmen auch fĂŒr beliebige, nicht-lineare Flugpfade der Radarplattform. Sie sind auch robust gegenĂŒber LagewinkelĂ€nderungen, die wĂ€hrend der Datenerfassung aufgrund von Luftturbulenzen jederzeit auftreten können. Die fĂŒr die Untersuchungen verwendeten Daten sind ausschließlich entfernungskomprimierte Radardaten. Da das Signal-Rausch-VerhĂ€ltnis von Flugzeugradar-Daten im Allgemeinen sehr hoch ist, benötigen die neuentwickelten Algorithmen keine vollstĂ€ndig fokussierten Radarbilder. Dies reduziert die Gesamtverarbeitungszeit erheblich und ebnet den Weg fĂŒr zukĂŒnftige Echtzeitanwendungen. Der entwickelte neuartige Schiffsdetektor arbeitet direkt im Entfernungs-Doppler-Bereich mit sehr kurzen kohĂ€renten Verarbeitungsintervallen (CPIs) der entfernungskomprimierten Radardaten. Aufgrund der sehr kurzen CPIs werden die detektierten Ziele im Dopplerbereich fokussiert abgebildet. Wenn sich die Schiffe zusĂ€tzlich mit einer bestimmten Radialgeschwindigkeit bewegen, werden ihre Signale aus dem Clutter-Bereich hinausgeschoben. Dies erhöht das VerhĂ€ltnis von Signal- zu Clutter-Energie und verbessert somit die Detektierbarkeit. Die Genauigkeit der Detektion hĂ€ngt stark von der QualitĂ€t der von der MeeresoberflĂ€che rĂŒckgestreuten Radardaten ab, die fĂŒr die SchĂ€tzung der Clutter-Statistik verwendet werden. Diese wird benötigt, um einen Detektions-Schwellenwert fĂŒr eine konstante Fehlalarmrate (CFAR) abzuleiten und die Anzahl der Fehlalarme niedrig zu halten. Daher umfasst der vorgeschlagene Detektor auch eine neuartige Methode zur automatischen Extraktion von Trainingsdaten fĂŒr die StatistikschĂ€tzung sowie geeignete Ozean-Clutter-Modelle. Da es sich bei Schiffen um ausgedehnte Ziele handelt, die in hochauflösenden Radardaten mehr als eine Auflösungszelle belegen, werden nach der Detektion mehrere von einem Ziel stammende Pixel zu einem physischen Objekten zusammengefasst, das dann in aufeinanderfolgenden CPIs mit Hilfe eines Bewegungsmodells und eines neuen Mehrzielverfolgungs-Algorithmus (Multi-Target Tracking) getrackt wird. WĂ€hrend des Trackings werden falsche Zielspuren und Geisterzielspuren automatisch erkannt und durch ein leistungsfĂ€higes datenbankbasiertes Track-Management-System terminiert. Die Zielspuren im Entfernungs-Doppler-Bereich werden geokodiert bzw. auf den Boden projiziert, nachdem die Einfallswinkel (DOA) aller Track-Punkte geschĂ€tzt wurden. Es werden verschiedene Methoden zur SchĂ€tzung der DOA-Winkel fĂŒr ausgedehnte Ziele vorgeschlagen und anhand von echten Radardaten, die Signale von echten Schiffen beinhalten, bewertet

    Computational Algorithms for Improved Synthetic Aperture Radar Image Focusing

    Get PDF
    High-resolution radar imaging is an area undergoing rapid technological and scientiïŹc development. Synthetic Aperture Radar (SAR) and Inverse Synthetic Aperture Radar (ISAR) are imaging radars with an ever-increasing number of applications for both civilian and military users. The advancements in phased array radar and digital computing technologies move the trend of this technology towards higher spatial resolution and more advanced imaging modalities. Signal processing algorithm development plays a key role in making full use of these technological developments.In SAR and ISAR imaging, the image reconstruction process is based on using the relative motion between the radar and the scene. An important part of the signal processing chain is the estimation and compensation of this relative motion. The increased spatial resolution and number of receive channels cause the approximations used to derive conventional algorithms for image reconstruction and motion compensation to break down. This leads to limited applicability and performance limitations in non-ideal operating conditions.This thesis presents novel research in the areas of data-driven motion compensation and image reconstruction in non-cooperative ISAR and Multichannel Synthetic Aperture Radar (MSAR) imaging. To overcome the limitations of conventional algorithms, this thesis proposes novel algorithms leading to increased estimation performance and image quality. Because a real-time imaging capability is important in many applications, special emphasis is placed on the computational aspects of the algorithms.For non-cooperative ISAR imaging, the thesis proposes improvements to the range alignment, time window selection, autofocus, time-frequency-based image reconstruction and cross-range scaling procedures. These algorithms are combined into a computationally eïŹƒcient non-cooperative ISAR imaging algorithm based on mathematical optimization. The improvements are experimentally validated to reduce the computational burden and signiïŹcantly increase the image quality under complex target motion dynamics.Time domain algorithms oïŹ€er a non-approximated and general way for image reconstruction in both ISAR and MSAR. Previously, their use has been limited by the available computing power. In this thesis, a contrast optimization approach for time domain ISAR imaging is proposed. The algorithm is demonstrated to produce improved imaging performance under the most challenging motion compensation scenarios. The thesis also presents fast time domain algorithms for MSAR. Numerical simulations conïŹrm that the proposed algorithms oïŹ€er a reasonable compromise between computational speed and image quality metrics

    Crop Growth Monitoring by Hyperspectral and Microwave Remote Sensing

    Get PDF
    Methoden und Techniken der Fernerkundung fungieren als wichtige Hilfsmittel im regionalen Umweltmanagement. Um diese zu optimieren, untersucht die folgende Arbeit sowohl die Verwendung als auch Synergien verschiedener Sensoren aus unterschiedlichen WellenlĂ€ngenbereichen. Der Fokus liegt auf der Modellentwicklung zur Ableitung von Pflanzenparametern aus fernerkundlichen Bestandsmessungen sowie auf deren Bewertung. Zu den verwendeten komplementĂ€ren Fernerkundungssystemen zĂ€hlen die Sensoren EO-1 Hyperion und ALI, Envisat ASAR sowie TerraSAR-X. FĂŒr die optischen Hyper- und Multispektralsysteme werden die Reflexion verschiedener Spektralbereiche sowie die Performanz der daraus abgeleiteten Vegetationsindizes untersucht und bewertet. Im Hinblick auf die verwendeten Radarsysteme konzentriert sich die Untersuchung auf Parameter wie WellenlĂ€nge, Einfallswinkel, RadarrĂŒckstreuung und Polarisation. Die Eigenschaften verschiedener Parameterkombinationen werden hierbei dargestellt und der komplementĂ€re Beitrag der Radarfernerkundung zur WachstumsĂŒberwachung bewertet. Hierzu wurden zwei Testgebiete, eines fĂŒr Winterweizen in der Nordchinesischen Tiefebene und eines fĂŒr Reis im Nordosten Chinas ausgewĂ€hlt. In beiden Gebieten wurden wĂ€hrend der Wachstumsperioden umfangreiche Feldmessungen von Bestandsparametern wĂ€hrend der SatellitenĂŒberflĂŒge oder zeitnah dazu durchgefĂŒhrt. Mit Hilfe von linearen Regressionsmodellen zwischen Satellitendaten und Biomasse wird die SensitivitĂ€t hyperspektraler Reflexion und RadarrĂŒckstreuung im Hinblick auf das Wachstum des Winterweizens untersucht. FĂŒr die optischen Daten werden drei verschiedene Modelvarianten untersucht: traditionelle Vegetationsindices berechnet aus Multispektraldaten, traditionelle Vegetationsindices berechnet aus Hyperspektraldaten sowie die Berechnung von Normalised Ratio Indices (NRI) basierend auf allen möglichen 2-Band Kombinationen im Spektralbereich zwischen 400 und 2500 nm. Weiterhin wird die gemessene Biomasse mit der gleichpolarisierten (VV) C-Band RĂŒckstreuung des Envisat ASAR Sensors linear in Beziehung gesetzt. Um den komplementĂ€ren Informationsgehalt von Hyperspektral und Radardaten zu nutzen, werden optische und Radardaten fĂŒr die Parameterableitung kombiniert eingesetzt. Das Hauptziel fĂŒr das Reisanbaugebiet im Nordosten Chinas ist das VerstĂ€ndnis ĂŒber die kohĂ€rente Dualpolarimetrische X-Band RĂŒckstreuung zu verschiedenen phĂ€nologischen Wachstumsstadien. HierfĂŒr werden die gleichpolarisierte TerraSAR-X RĂŒckstreuung (HH und VV) sowie abgeleitete polarimetrische Parameter untersucht und mit verschiedenen Ebenen im Bestand in Beziehung gesetzt. Weiterhin wird der Einfluss der Variation von Einfallswinkel und Auflösung auf die Bestandsparameterableitung quantifiziert. Neben der Signatur von HH und VV ermöglichen vor allem die polarimetrischen Parameter Phasendifferenz, Ratio, Koherenz und Entropy-Alpha die Bestimmung bestimmter Wachstumsstadien. Die Ergebnisse der Arbeit zeigen, dass die komplementĂ€ren Fernerkundungssysteme Optik und Radar die Ableitung von Pflanzenparametern und die Bestimmung von HeterogenitĂ€ten in den BestĂ€nden ermöglichen. Die Synergien diesbezĂŒglich mĂŒssen auch in Zukunft weiter untersucht werden, da neue und immer variablere Fernerkundungssysteme zur VerfĂŒgung stehen werden und das Umweltmanagement weiter verbessern können

    Traceable Radiometric Calibration of Synthetic Aperture Radars

    Get PDF
    Synthetic aperture radar (SAR) systems allow to quantitatively measure the radar backscatter of an imaged terrain region. In order to achieve comparability between measurement results, traceable radiometric calibration is indispensable. The central claim of the work is that nowadays, however, radiometric SAR measurements are not traceably calibrated. In order to resolve this problem, five contributions are made: (a) The new measurement quantity “equivalent radar cross section” (ERCS) is defined. (b) A numerical approach for linking the known quantity “radar cross section” (RCS) with the novel ERCS is introduced. (c) The effect of the chosen apodization functions on radiometric measurements is analytically investigated. (d) The novel three-transponder method is developed which allows accurate RCS calibrations of SAR transponders. (e) The method of hierarchical Bayesian data analysis is introduced to the field of radiometric SAR calibration. The achieved traceability for radiometric SAR measurements allows more accurate radiometric measurement results especially for modern, high-resolution SAR systems. Furthermore, data exchange and cooperation is facilitated

    Combining Multitemporal Microwave and Optical Remote Sensing Data. Mapping of Land Use / Land Cover, Crop Type, and Crop Traits

    Get PDF
    Humanity has changed the earth’s surface to a dramatic extent. This is especially true for the area used for agricultural production. Against the background of a growing world population and the associated increased demand for food, it is precisely this area that will become even more important in the future. In order not to have to allocate even more land to agricultural use, optimization and intensification is the only way out of the dilemma. In this context, precise Geoinformation of the agriculturally used area is of central importance. It is utilized for improving land use, producing yield forecasts for more stable food security, and optimizing agricultural management. Rapid developments in the field of satellite-based remote sensing sensors make it possible to monitor agricultural areas with increased spatial, spectral and temporal resolution. However, to retrieve the needed information from this data, new methods are needed. Furthermore, the quality of the data has to be verified. Only then can the presented geodata help to grow crops more sustainably and more efficiently. This thesis develops new approaches for monitoring agricultural areas using the technology of microwave remote sensing in combination with optical remote sensing and existing geodata. It is framed by the overall objective to obtain knowledge on how this combination of data can provide the necessary geoinformation for land use studies, precision farming, and agricultural monitoring systems. Hundreds of remote sensing images from more than eight different satellites were analyzed in six research studies from two different Areas of Interest (AOIs). The studies guide through various spatial scales. First, the general Land Use / Land Cover (LULC) on a regional level in a multi-sensor scenario is derived, evaluating different sensor combinations of varying resolutions. Next, an innovative method is proposed, through which the high geometric accuracy of radar-imaging satellite sensors is exploited to update the spatial accuracy of any external geodata of lower spatial accuracy. Such external data is then used in the next two studies, which focus on cost-effective crop type mapping using Synthetic Aperture Radar (SAR) images. The resulting enhanced LULC maps present the annually changing crop types of the region alongside external, official geoinformation that is not retrievable from remote sensing sensors. The last two research studies deal with a single maize field, on which high resolution optical WorldView-2 images and experimental bistatic SAR observations from TanDEM-X are assessed and combined with ground measurements. As a result, this thesis shows that, depending on the AOI and the application, different resolution demands need to be fulfilled before LULC, crop type, and crop traits mapping can be performed with adequate accuracy. The spatial resolution needs to be adapted to the particularities of the AOI. Evaluation of the sensors showed that SAR sensors proved beneficial for the study objective. Processing the SAR images is complicated, and the images are unintuitive at first sight. However, the advantage of SAR sensors is that they work even in cloudy conditions. This results in an increased temporal resolution, which is particularly important for monitoring the highly dynamic agricultural area. Furthermore, the high geometric accuracy of the SAR images proved ideal for implementing the Multi-Data Approach (MDA). Thus information-rich external geodata could be used to lower the remote sensing resolution needs, improve the accuracy of the LULC-maps, and to provide enhanced LULC-maps. The first study of the maize field demonstrates the potential of the WorldView-2 data in predicting in-field biomass variations, and its increased accuracy when fused with plant height measurements. The second study shows the potential of the TanDEM-X Constellation (TDM) to retrieve plant height from space. LULC, crop type and information on the spatial distribution of biomass can thus be derived efficiently and with high accuracy from the combination of SAR, optical satellites and external geodata. The shown analyses for acquiring such geoinformation represent a high potential for helping to solve the future challenges of agricultural production
    corecore