41,958 research outputs found

    Software-Defined Cloud Computing: Architectural Elements and Open Challenges

    Full text link
    The variety of existing cloud services creates a challenge for service providers to enforce reasonable Software Level Agreements (SLA) stating the Quality of Service (QoS) and penalties in case QoS is not achieved. To avoid such penalties at the same time that the infrastructure operates with minimum energy and resource wastage, constant monitoring and adaptation of the infrastructure is needed. We refer to Software-Defined Cloud Computing, or simply Software-Defined Clouds (SDC), as an approach for automating the process of optimal cloud configuration by extending virtualization concept to all resources in a data center. An SDC enables easy reconfiguration and adaptation of physical resources in a cloud infrastructure, to better accommodate the demand on QoS through a software that can describe and manage various aspects comprising the cloud environment. In this paper, we present an architecture for SDCs on data centers with emphasis on mobile cloud applications. We present an evaluation, showcasing the potential of SDC in two use cases-QoS-aware bandwidth allocation and bandwidth-aware, energy-efficient VM placement-and discuss the research challenges and opportunities in this emerging area.Comment: Keynote Paper, 3rd International Conference on Advances in Computing, Communications and Informatics (ICACCI 2014), September 24-27, 2014, Delhi, Indi

    Domain-Specific Modeling and Code Generation for Cross-Platform Multi-Device Mobile Apps

    Get PDF
    Nowadays, mobile devices constitute the most common computing device. This new computing model has brought intense competition among hardware and software providers who are continuously introducing increasingly powerful mobile devices and innovative OSs into the market. In consequence, cross-platform and multi-device development has become a priority for software companies that want to reach the widest possible audience. However, developing an application for several platforms implies high costs and technical complexity. Currently, there are several frameworks that allow cross-platform application development. However, these approaches still require manual programming. My research proposes to face the challenge of the mobile revolution by exploiting abstraction, modeling and code generation, in the spirit of the modern paradigm of Model Driven Engineering

    Building real-time embedded applications on QduinoMC: a web-connected 3D printer case study

    Full text link
    Single Board Computers (SBCs) are now emerging with multiple cores, ADCs, GPIOs, PWM channels, integrated graphics, and several serial bus interfaces. The low power consumption, small form factor and I/O interface capabilities of SBCs with sensors and actuators makes them ideal in embedded and real-time applications. However, most SBCs run non-realtime operating systems based on Linux and Windows, and do not provide a user-friendly API for application development. This paper presents QduinoMC, a multicore extension to the popular Arduino programming environment, which runs on the Quest real-time operating system. QduinoMC is an extension of our earlier single-core, real-time, multithreaded Qduino API. We show the utility of QduinoMC by applying it to a specific application: a web-connected 3D printer. This differs from existing 3D printers, which run relatively simple firmware and lack operating system support to spool multiple jobs, or interoperate with other devices (e.g., in a print farm). We show how QduinoMC empowers devices with the capabilities to run new services without impacting their timing guarantees. While it is possible to modify existing operating systems to provide suitable timing guarantees, the effort to do so is cumbersome and does not provide the ease of programming afforded by QduinoMC.http://www.cs.bu.edu/fac/richwest/papers/rtas_2017.pdfAccepted manuscrip

    Web Data Extraction, Applications and Techniques: A Survey

    Full text link
    Web Data Extraction is an important problem that has been studied by means of different scientific tools and in a broad range of applications. Many approaches to extracting data from the Web have been designed to solve specific problems and operate in ad-hoc domains. Other approaches, instead, heavily reuse techniques and algorithms developed in the field of Information Extraction. This survey aims at providing a structured and comprehensive overview of the literature in the field of Web Data Extraction. We provided a simple classification framework in which existing Web Data Extraction applications are grouped into two main classes, namely applications at the Enterprise level and at the Social Web level. At the Enterprise level, Web Data Extraction techniques emerge as a key tool to perform data analysis in Business and Competitive Intelligence systems as well as for business process re-engineering. At the Social Web level, Web Data Extraction techniques allow to gather a large amount of structured data continuously generated and disseminated by Web 2.0, Social Media and Online Social Network users and this offers unprecedented opportunities to analyze human behavior at a very large scale. We discuss also the potential of cross-fertilization, i.e., on the possibility of re-using Web Data Extraction techniques originally designed to work in a given domain, in other domains.Comment: Knowledge-based System

    A Taxonomy of Workflow Management Systems for Grid Computing

    Full text link
    With the advent of Grid and application technologies, scientists and engineers are building more and more complex applications to manage and process large data sets, and execute scientific experiments on distributed resources. Such application scenarios require means for composing and executing complex workflows. Therefore, many efforts have been made towards the development of workflow management systems for Grid computing. In this paper, we propose a taxonomy that characterizes and classifies various approaches for building and executing workflows on Grids. We also survey several representative Grid workflow systems developed by various projects world-wide to demonstrate the comprehensiveness of the taxonomy. The taxonomy not only highlights the design and engineering similarities and differences of state-of-the-art in Grid workflow systems, but also identifies the areas that need further research.Comment: 29 pages, 15 figure

    Relational Constraint Driven Test Case Synthesis for Web Applications

    Full text link
    This paper proposes a relational constraint driven technique that synthesizes test cases automatically for web applications. Using a static analysis, servlets can be modeled as relational transducers, which manipulate backend databases. We present a synthesis algorithm that generates a sequence of HTTP requests for simulating a user session. The algorithm relies on backward symbolic image computation for reaching a certain database state, given a code coverage objective. With a slight adaptation, the technique can be used for discovering workflow attacks on web applications.Comment: In Proceedings TAV-WEB 2010, arXiv:1009.330

    Context Aware Computing for The Internet of Things: A Survey

    Get PDF
    As we are moving towards the Internet of Things (IoT), the number of sensors deployed around the world is growing at a rapid pace. Market research has shown a significant growth of sensor deployments over the past decade and has predicted a significant increment of the growth rate in the future. These sensors continuously generate enormous amounts of data. However, in order to add value to raw sensor data we need to understand it. Collection, modelling, reasoning, and distribution of context in relation to sensor data plays critical role in this challenge. Context-aware computing has proven to be successful in understanding sensor data. In this paper, we survey context awareness from an IoT perspective. We present the necessary background by introducing the IoT paradigm and context-aware fundamentals at the beginning. Then we provide an in-depth analysis of context life cycle. We evaluate a subset of projects (50) which represent the majority of research and commercial solutions proposed in the field of context-aware computing conducted over the last decade (2001-2011) based on our own taxonomy. Finally, based on our evaluation, we highlight the lessons to be learnt from the past and some possible directions for future research. The survey addresses a broad range of techniques, methods, models, functionalities, systems, applications, and middleware solutions related to context awareness and IoT. Our goal is not only to analyse, compare and consolidate past research work but also to appreciate their findings and discuss their applicability towards the IoT.Comment: IEEE Communications Surveys & Tutorials Journal, 201
    corecore