1,794 research outputs found

    Coauthor prediction for junior researchers

    Get PDF
    Research collaboration can bring in different perspectives and generate more productive results. However, finding an appropriate collaborator can be difficult due to the lacking of sufficient information. Link prediction is a related technique for collaborator discovery; but its focus has been mostly on the core authors who have relatively more publications. We argue that junior researchers actually need more help in finding collaborators. Thus, in this paper, we focus on coauthor prediction for junior researchers. Most of the previous works on coauthor prediction considered global network feature and local network feature separately, or tried to combine local network feature and content feature. But we found a significant improvement by simply combing local network feature and global network feature. We further developed a regularization based approach to incorporate multiple features simultaneously. Experimental results demonstrated that this approach outperformed the simple linear combination of multiple features. We further showed that content features, which were proved to be useful in link prediction, can be easily integrated into our regularization approach. © 2013 Springer-Verlag

    Deep Learning based Recommender System: A Survey and New Perspectives

    Full text link
    With the ever-growing volume of online information, recommender systems have been an effective strategy to overcome such information overload. The utility of recommender systems cannot be overstated, given its widespread adoption in many web applications, along with its potential impact to ameliorate many problems related to over-choice. In recent years, deep learning has garnered considerable interest in many research fields such as computer vision and natural language processing, owing not only to stellar performance but also the attractive property of learning feature representations from scratch. The influence of deep learning is also pervasive, recently demonstrating its effectiveness when applied to information retrieval and recommender systems research. Evidently, the field of deep learning in recommender system is flourishing. This article aims to provide a comprehensive review of recent research efforts on deep learning based recommender systems. More concretely, we provide and devise a taxonomy of deep learning based recommendation models, along with providing a comprehensive summary of the state-of-the-art. Finally, we expand on current trends and provide new perspectives pertaining to this new exciting development of the field.Comment: The paper has been accepted by ACM Computing Surveys. https://doi.acm.org/10.1145/328502

    Mining and Analyzing the Academic Network

    Get PDF
    Social Network research has attracted the interests of many researchers, not only in analyzing the online social networking applications, such as Facebook and Twitter, but also in providing comprehensive services in scientific research domain. We define an Academic Network as a social network which integrates scientific factors, such as authors, papers, affiliations, publishing venues, and their relationships, such as co-authorship among authors and citations among papers. By mining and analyzing the academic network, we can provide users comprehensive services as searching for research experts, published papers, conferences, as well as detecting research communities or the evolutions hot research topics. We can also provide recommendations to users on with whom to collaborate, whom to cite and where to submit.In this dissertation, we investigate two main tasks that have fundamental applications in the academic network research. In the first, we address the problem of expertise retrieval, also known as expert finding or ranking, in which we identify and return a ranked list of researchers, based upon their estimated expertise or reputation, to user-specified queries. In the second, we address the problem of research action recommendation (prediction), specifically, the tasks of publishing venue recommendation, citation recommendation and coauthor recommendation. For both tasks, to effectively mine and integrate heterogeneous information and therefore develop well-functioning ranking or recommender systems is our principal goal. For the task of expertise retrieval, we first proposed or applied three modified versions of PageRank-like algorithms into citation network analysis; we then proposed an enhanced author-topic model by simultaneously modeling citation and publishing venue information; we finally incorporated the pair-wise learning-to-rank algorithm into traditional topic modeling process, and further improved the model by integrating groups of author-specific features. For the task of research action recommendation, we first proposed an improved neighborhood-based collaborative filtering approach for publishing venue recommendation; we then applied our proposed enhanced author-topic model and demonstrated its effectiveness in both cited author prediction and publishing venue prediction; finally we proposed an extended latent factor model that can jointly model several relations in an academic environment in a unified way and verified its performance in four recommendation tasks: the recommendation on author-co-authorship, author-paper citation, paper-paper citation and paper-venue submission. Extensive experiments conducted on large-scale real-world data sets demonstrated the superiority of our proposed models over other existing state-of-the-art methods

    Data-driven Computational Social Science: A Survey

    Get PDF
    Social science concerns issues on individuals, relationships, and the whole society. The complexity of research topics in social science makes it the amalgamation of multiple disciplines, such as economics, political science, and sociology, etc. For centuries, scientists have conducted many studies to understand the mechanisms of the society. However, due to the limitations of traditional research methods, there exist many critical social issues to be explored. To solve those issues, computational social science emerges due to the rapid advancements of computation technologies and the profound studies on social science. With the aids of the advanced research techniques, various kinds of data from diverse areas can be acquired nowadays, and they can help us look into social problems with a new eye. As a result, utilizing various data to reveal issues derived from computational social science area has attracted more and more attentions. In this paper, to the best of our knowledge, we present a survey on data-driven computational social science for the first time which primarily focuses on reviewing application domains involving human dynamics. The state-of-the-art research on human dynamics is reviewed from three aspects: individuals, relationships, and collectives. Specifically, the research methodologies used to address research challenges in aforementioned application domains are summarized. In addition, some important open challenges with respect to both emerging research topics and research methods are discussed.Comment: 28 pages, 8 figure

    Modeling Scholar Profile in Expert Recommendation based on Multi-Layered Bibliographic Graph

    Get PDF
    A recommendation system requires the profile of researchers which called here as Scholar Profile for suggestions based on expertise. This dissertation contributes on modeling unbiased scholar profile for more objective expertise evidence that consider interest changes and less focused on citations. Interest changes lead to diverse topics and make the expertise levels on topics differ. Scholar profile is expected to capture expertise in terms of productivity aspect which often signified from the volume of publications and citations. We include researcher behavior in publishing articles to avoid misleading citation. Therefore, the expertise levels of researchers on topics is influenced by interest evolution, productivity, dynamicity, and behavior extracted from bibliographic data of published scholarly articles. As this dissertation output, the scholar profile model employed within a recommendation system for recommending productive researchers who provide academic guidance. The scholar profile is generated from multi layers of bibliographic data, such as layers of author, topic, and relations between those layers to represent academic social network. There is no predefined information of topics in a cold-start situation, such that procedures of topic mapping are necessary. Then, features of productivity, dynamicity and behavior of researchers within those layers are taken from some observed years to accommodate the behavior aspect. We experimented with AMiner dataset often used in the following bibliographic data related studies to empirically investigate: (a) topic mapping strategies to obtain interest of researchers, (b) feature extraction model for productivity, dynamicity, and behavior aspects based on the mapped topics, and (c) expertise rank that considers interest changes and less focused on citations from the scholar profile. Ensuring the validity results, our experiments worked on standard expert list of AMiner researchers. We selected Natural Language Processing and Information Extraction (NLP-IE) domains because of their familiarity and interrelated context to make it easier for introducing cases of interest changes. Using the mapped topics, we also made minor contributions on transformation procedures for visualizing researchers on maps of Scopus subjects and investigating the possibilities of conflict of interest

    SCSMiner: mining social coding sites for software developer recommendation with relevance propagation

    Full text link
    © 2018, Springer Science+Business Media, LLC, part of Springer Nature. With the advent of social coding sites, software development has entered a new era of collaborative work. Social coding sites (e.g., GitHub) can integrate social networking and distributed version control in a unified platform to facilitate collaborative developments over the world. One unique characteristic of such sites is that the past development experiences of developers provided on the sites convey the implicit metrics of developer’s programming capability and expertise, which can be applied in many areas, such as software developer recruitment for IT corporations. Motivated by this intuition, we aim to develop a framework to effectively locate the developers with right coding skills. To achieve this goal, we devise a generativ e probabilistic expert ranking model upon which a consistency among projects is incorporated as graph regularization to enhance the expert ranking and a perspective of relevance propagation illustration is introduced. For evaluation, StackOverflow is leveraged to complement the ground truth of expert. Finally, a prototype system, SCSMiner, which provides expert search service based on a real-world dataset crawled from GitHub is implemented and demonstrated

    Social Search: retrieving information in Online Social Platforms -- A Survey

    Full text link
    Social Search research deals with studying methodologies exploiting social information to better satisfy user information needs in Online Social Media while simplifying the search effort and consequently reducing the time spent and the computational resources utilized. Starting from previous studies, in this work, we analyze the current state of the art of the Social Search area, proposing a new taxonomy and highlighting current limitations and open research directions. We divide the Social Search area into three subcategories, where the social aspect plays a pivotal role: Social Question&Answering, Social Content Search, and Social Collaborative Search. For each subcategory, we present the key concepts and selected representative approaches in the literature in greater detail. We found that, up to now, a large body of studies model users' preferences and their relations by simply combining social features made available by social platforms. It paves the way for significant research to exploit more structured information about users' social profiles and behaviors (as they can be inferred from data available on social platforms) to optimize their information needs further

    The 'who' and 'what' of #diabetes on Twitter

    Get PDF
    Social media are being increasingly used for health promotion, yet the landscape of users, messages and interactions in such fora is poorly understood. Studies of social media and diabetes have focused mostly on patients, or public agencies addressing it, but have not looked broadly at all the participants or the diversity of content they contribute. We study Twitter conversations about diabetes through the systematic analysis of 2.5 million tweets collected over 8 months and the interactions between their authors. We address three questions: (1) what themes arise in these tweets?, (2) who are the most influential users?, (3) which type of users contribute to which themes? We answer these questions using a mixed-methods approach, integrating techniques from anthropology, network science and information retrieval such as thematic coding, temporal network analysis, and community and topic detection. Diabetes-related tweets fall within broad thematic groups: health information, news, social interaction, and commercial. At the same time, humorous messages and references to popular culture appear consistently, more than any other type of tweet. We classify authors according to their temporal 'hub' and 'authority' scores. Whereas the hub landscape is diffuse and fluid over time, top authorities are highly persistent across time and comprise bloggers, advocacy groups and NGOs related to diabetes, as well as for-profit entities without specific diabetes expertise. Top authorities fall into seven interest communities as derived from their Twitter follower network. Our findings have implications for public health professionals and policy makers who seek to use social media as an engagement tool and to inform policy design.Comment: 25 pages, 11 figures, 7 tables. Supplemental spreadsheet available from http://journals.sagepub.com/doi/suppl/10.1177/2055207616688841, Digital Health, Vol 3, 201
    • …
    corecore