352 research outputs found

    Evaluating Resilience of Cyber-Physical-Social Systems

    Get PDF
    Nowadays, protecting the network is not the only security concern. Still, in cyber security, websites and servers are becoming more popular as targets due to the ease with which they can be accessed when compared to communication networks. Another threat in cyber physical social systems with human interactions is that they can be attacked and manipulated not only by technical hacking through networks, but also by manipulating people and stealing users’ credentials. Therefore, systems should be evaluated beyond cy- ber security, which means measuring their resilience as a piece of evidence that a system works properly under cyber-attacks or incidents. In that way, cyber resilience is increas- ingly discussed and described as the capacity of a system to maintain state awareness for detecting cyber-attacks. All the tasks for making a system resilient should proactively maintain a safe level of operational normalcy through rapid system reconfiguration to detect attacks that would impact system performance. In this work, we broadly studied a new paradigm of cyber physical social systems and defined a uniform definition of it. To overcome the complexity of evaluating cyber resilience, especially in these inhomo- geneous systems, we proposed a framework including applying Attack Tree refinements and Hierarchical Timed Coloured Petri Nets to model intruder and defender behaviors and evaluate the impact of each action on the behavior and performance of the system.Hoje em dia, proteger a rede não é a única preocupação de segurança. Ainda assim, na segurança cibernética, sites e servidores estão se tornando mais populares como alvos devido à facilidade com que podem ser acessados quando comparados às redes de comu- nicação. Outra ameaça em sistemas sociais ciberfisicos com interações humanas é que eles podem ser atacados e manipulados não apenas por hackers técnicos através de redes, mas também pela manipulação de pessoas e roubo de credenciais de utilizadores. Portanto, os sistemas devem ser avaliados para além da segurança cibernética, o que significa medir sua resiliência como uma evidência de que um sistema funciona adequadamente sob ataques ou incidentes cibernéticos. Dessa forma, a resiliência cibernética é cada vez mais discutida e descrita como a capacidade de um sistema manter a consciência do estado para detectar ataques cibernéticos. Todas as tarefas para tornar um sistema resiliente devem manter proativamente um nível seguro de normalidade operacional por meio da reconfi- guração rápida do sistema para detectar ataques que afetariam o desempenho do sistema. Neste trabalho, um novo paradigma de sistemas sociais ciberfisicos é amplamente estu- dado e uma definição uniforme é proposta. Para superar a complexidade de avaliar a resiliência cibernética, especialmente nesses sistemas não homogéneos, é proposta uma estrutura que inclui a aplicação de refinamentos de Árvores de Ataque e Redes de Petri Coloridas Temporizadas Hierárquicas para modelar comportamentos de invasores e de- fensores e avaliar o impacto de cada ação no comportamento e desempenho do sistema

    Security Analysis and Improvement Model for Web-based Applications

    Get PDF
    Today the web has become a major conduit for information. As the World Wide Web?s popularity continues to increase, information security on the web has become an increasing concern. Web information security is related to availability, confidentiality, and data integrity. According to the reports from http://www.securityfocus.com in May 2006, operating systems account for 9% vulnerability, web-based software systems account for 61% vulnerability, and other applications account for 30% vulnerability. In this dissertation, I present a security analysis model using the Markov Process Model. Risk analysis is conducted using fuzzy logic method and information entropy theory. In a web-based application system, security risk is most related to the current states in software systems and hardware systems, and independent of web application system states in the past. Therefore, the web-based applications can be approximately modeled by the Markov Process Model. The web-based applications can be conceptually expressed in the discrete states of (web_client_good; web_server_good, web_server_vulnerable, web_server_attacked, web_server_security_failed; database_server_good, database_server_vulnerable, database_server_attacked, database_server_security_failed) as state space in the Markov Chain. The vulnerable behavior and system response in the web-based applications are analyzed in this dissertation. The analyses focus on functional availability-related aspects: the probability of reaching a particular security failed state and the mean time to the security failure of a system. Vulnerability risk index is classified in three levels as an indicator of the level of security (low level, high level, and failed level). An illustrative application example is provided. As the second objective of this dissertation, I propose a security improvement model for the web-based applications using the GeoIP services in the formal methods. In the security improvement model, web access is authenticated in role-based access control using user logins, remote IP addresses, and physical locations as subject credentials to combine with the requested objects and privilege modes. Access control algorithms are developed for subjects, objects, and access privileges. A secure implementation architecture is presented. In summary, the dissertation has developed security analysis and improvement model for the web-based application. Future work will address Markov Process Model validation when security data collection becomes easy. Security improvement model will be evaluated in performance aspect

    Threat Intelligence in Support of Cyber Situation Awareness

    Get PDF
    Despite technological advances in the information security field, attacks by unauthorized individuals and groups continue to penetrate defenses. Due to the rapidly changing environment of the Internet, the appearance of newly developed malicious software or attack techniques accelerates while security professionals continue in a reactive posture with limited time for identifying new threats. The problem addressed in this study was the perceived value of threat intelligence as a proactive process for information security. The purpose of this study was to explore how situation awareness is enhanced by receiving advanced intelligence reports resulting in better decision-making for proper response to security threats. Using a qualitative case study methodology a purposeful sample of 13 information security professionals were individually interviewed and the data analyzed through Nvivo 11 analytical software. The research questions addressed threat intelligence and its impact on the security analyst\u27s cognitive situation awareness. Analysis of the data collected indicated that threat intelligence may enhance the security analyst\u27s situation awareness, as supported in the general literature. In addition, this study showed that the differences in sources or the lack of an intelligence program may have a negative impact on determining the proper security response in a timely manner. The implications for positive social change include providing leaders with greater awareness through threat intelligence of ways to minimize the effects of cyber attacks, which may result in increasing business and consumer confidence in the protection of personal and confidential information

    ESTABLISHMENT OF CYBER-PHYSICAL CORRELATION AND VERIFICATION BASED ON ATTACK SCENARIOS IN POWER SUBSTATIONS

    Get PDF
    Insurance businesses for the cyberworld are an evolving opportunity. However, a quantitative model in today\u27s security technologies may not be established. Besides, a generalized methodology to assess the systematic risks remains underdeveloped. There has been a technical challenge to capture intrusion risks of the cyber-physical system, including estimating the impact of the potential cascaded events initiated by the hacker\u27s malicious actions. This dissertation attempts to integrate both modeling aspects: 1) steady-state probabilities for the Internet protocol-based substation switching attack events based on hypothetical cyberattacks, 2) potential electricity losses. The phenomenon of sequential attacks can be characterized using a time-domain simulation that exhibits dynamic cascaded events. Such substation attack simulation studies can establish an actuarial framework for grid operation. The novelty is three-fold. First, the development to extend features of steady-state probabilities is established based on 1) modified password models, 2) new models on digital relays with two-step authentications, and 3) honeypot models. A generalized stochastic Petri net is leveraged to formulate the detailed statuses and transitions of components embedded in a Cyber-net. Then, extensive modeling of steady-state probabilities is qualitatively performed. Methodologies on how transition probabilities and rates are extracted from network components and actuarial applications are summarized and discussed. Second, dynamic models requisite for switching attacks against multiple substations or digital relays deployed in substations are formulated. Imperative protection and control models to represent substation attacks are clarified with realistic model parameters. Specifically, wide-area protections, i.e., special protection systems (SPSs), are elaborated, asserting that event-driven SPSs may be skipped for this type of case study. Third, the substation attack replay using a proven commercially available time-domain simulation tool is validated in IEEE system models to study attack combinations\u27 critical paths. As the time-domain simulation requires a higher computational cost than power flow-based steady-state simulation, a balance of both methods is established without missing the critical dynamic behavior. The direct impact of substation attacks, i.e., electricity losses, is compared between steady-state and dynamic analyses. Steady-state analysis results are prone to be pessimistic for a smaller number of compromised substations. Finally, simulation findings based on the risk-based metrics and technical implementation are extensively discussed with future work
    corecore