13,394 research outputs found

    A graph-based aspect interference detection approach for UML-based aspect-oriented models

    Get PDF
    Aspect Oriented Modeling (AOM) techniques facilitate separate modeling of concerns and allow for a more flexible composition of these than traditional modeling technique. While this improves the understandability of each submodel, in order to reason about the behavior of the composed system and to detect conflicts among submodels, automated tool support is required. Current techniques for conflict detection among aspects generally have at least one of the following weaknesses. They require to manually model the abstract semantics for each system; or they derive the system semantics from code assuming one specific aspect-oriented language. Defining an extra semantics model for verification bears the risk of inconsistencies between the actual and the verified design; verifying only at implementation level hinders fixng errors in earlier phases. We propose a technique for fully automatic detection of conflicts between aspects at the model level; more specifically, our approach works on UML models with an extension for modeling pointcuts and advice. As back-end we use a graph-based model checker, for which we have defined an operational semantics of UML diagrams, pointcuts and advice. In order to simulate the system, we automatically derive a graph model from the diagrams. The result is another graph, which represents all possible program executions, and which can be verified against a declarative specification of invariants.\ud To demonstrate our approach, we discuss a UML-based AOM model of the "Crisis Management System" and a possible design and evolution scenario. The complexity of the system makes con°icts among composed aspects hard to detect: already in the case of two simulated aspects, the state space contains 623 di®erent states and 9 different execution paths. Nevertheless, in case the right pruning methods are used, the state-space only grows linearly with the number of aspects; therefore, the automatic analysis scales

    Detecting Conflicts and Inconsistencies in Web Application Requirements

    Get PDF
    Web applications evolve fast. One of the main reasons for this evolution is that new requirements emerge and change constantly. These new requirements are posed either by customers or they are the consequence of users’ feedback about the application. One of the main problems when dealing with new requirements is their consistency in relationship with the current version of the application. In this paper we present an effective approach for detecting and solving inconsistencies and conflicts in web software requirements. We first characterize the kind of inconsistencies arising in web applications requirements and then show how to isolate them using a modeldriven approach. With a set of examples we illustrate our approach

    Identifying and Modelling Complex Workflow Requirements in Web Applications

    Get PDF
    Workflow plays a major role in nowadays business and therefore its requirement elicitation must be accurate and clear for achieving the solution closest to business’s needs. Due to Web applications popularity, the Web is becoming the standard platform for implementing business workflows. In this context, Web applications and their workflows must be adapted to market demands in such a way that time and effort are minimize. As they get more popular, they must give support to different functional requirements but also they contain tangled and scattered behaviour. In this work we present a model-driven approach for modelling workflows using a Domain Specific Language for Web application requirement called WebSpec. We present an extension to WebSpec based on Pattern Specifications for modelling crosscutting workflow requirements identifying tangled and scattered behaviour and reducing inconsistencies early in the cycle

    Detecting Conflicts and Inconsistencies in Web Application Requirements

    Get PDF
    Web applications evolve fast. One of the main reasons for this evolution is that new requirements emerge and change constantly. These new requirements are posed either by customers or they are the consequence of users' feedback about the application. One of the main problems when dealing with new requirements is their consistency in relationship with the current version of the application. In this paper we present an effective approach for detecting and solving inconsistencies and conflicts in web software requirements. We first characterize the kind of inconsistencies arising in web applications requirements and then show how to isolate them using a model-driven approach. With a set of examples we illustrate our approach.Publicado en Lecture Notes in Computer Science book series (LNCS, vol. 7059).Laboratorio de Investigación y Formación en Informática Avanzad

    Detecting Conflicts and Inconsistencies in Web Application Requirements

    Get PDF
    Web applications evolve fast. One of the main reasons for this evolution is that new requirements emerge and change constantly. These new requirements are posed either by customers or they are the consequence of users' feedback about the application. One of the main problems when dealing with new requirements is their consistency in relationship with the current version of the application. In this paper we present an effective approach for detecting and solving inconsistencies and conflicts in web software requirements. We first characterize the kind of inconsistencies arising in web applications requirements and then show how to isolate them using a model-driven approach. With a set of examples we illustrate our approach.Publicado en Lecture Notes in Computer Science book series (LNCS, vol. 7059).Laboratorio de Investigación y Formación en Informática Avanzad

    Comprehensive Security Framework for Global Threats Analysis

    Get PDF
    Cyber criminality activities are changing and becoming more and more professional. With the growth of financial flows through the Internet and the Information System (IS), new kinds of thread arise involving complex scenarios spread within multiple IS components. The IS information modeling and Behavioral Analysis are becoming new solutions to normalize the IS information and counter these new threads. This paper presents a framework which details the principal and necessary steps for monitoring an IS. We present the architecture of the framework, i.e. an ontology of activities carried out within an IS to model security information and User Behavioral analysis. The results of the performed experiments on real data show that the modeling is effective to reduce the amount of events by 91%. The User Behavioral Analysis on uniform modeled data is also effective, detecting more than 80% of legitimate actions of attack scenarios

    Model-Driven Methodology for Rapid Deployment of Smart Spaces based on Resource-Oriented Architectures

    Get PDF
    Advances in electronics nowadays facilitate the design of smart spaces based on physical mash-ups of sensor and actuator devices. At the same time, software paradigms such as Internet of Things (IoT) and Web of Things (WoT) are motivating the creation of technology to support the development and deployment of web-enabled embedded sensor and actuator devices with two major objectives: (i) to integrate sensing and actuating functionalities into everyday objects, and (ii) to easily allow a diversity of devices to plug into the Internet. Currently, developers who are applying this Internet-oriented approach need to have solid understanding about specific platforms and web technologies. In order to alleviate this development process, this research proposes a Resource-Oriented and Ontology-Driven Development (ROOD) methodology based on the Model Driven Architecture (MDA). This methodology aims at enabling the development of smart spaces through a set of modeling tools and semantic technologies that support the definition of the smart space and the automatic generation of code at hardware level. ROOD feasibility is demonstrated by building an adaptive health monitoring service for a Smart Gym

    Synthesis of behavioral models from scenarios

    No full text
    • …
    corecore