11,380 research outputs found

    A Bidirectional Soft-Switched DAB-Based Single-Stage Three-Phase AC–DC Converter for V2G Application

    Get PDF
    In vehicle-to-grid applications, the battery charger of the electric vehicle (EV) needs to have a bidirectional power flow capability. Galvanic isolation is necessary for safety. An ac-dc bidirectional power converter with high-frequency isolation results in high power density, a key requirement for an on-board charger of an EV. Dual-active-bridge (DAB) converters are preferred in medium power and high voltage isolated dc-dc converters due to high power density and better efficiency. This paper presents a DAB-based three-phase ac-dc isolated converter with a novel modulation strategy that results in: 1) single-stage power conversion with no electrolytic capacitor, improving the reliability and power density; 2) open-loop power factor correction; 3) soft-switching of all semiconductor devices; and 4) a simple linear relationship between the control variable and the transferred active power. This paper presents a detailed analysis of the proposed operation, along with simulation results and experimental verification

    An Integral Battery Charger with Power Factor Correction for Electric Scooter

    Get PDF
    This paper presents an integral battery charger for an electric scooter with high voltage batteries and interior-permanent-magnet motor traction drive. The battery charger is derived from the power hardware of the scooter, with the ac motor drive that operates as three-phase boost rectifier with power factor correction capability. The control of the charger is also integrated into the scooter control firmware that is implemented on a fixed-point DSP controller. Current-controlled or voltage-controlled charge modes are actuated according to the requirements of the battery management system, that is embedded into the battery pack. With respect to previous integrated chargers, the ac current is absorbed at unitary power factor with no harmonic distortion. Moreover, no additional filtering is needed since the pulsewidth modulation ripple is minimized by means of phase interleaving. The feasibility of the integral charger with different ac motors (induction motor, surface-mounted phase modulation motor) is also discussed, by means of a general model purposely developed for three-phase ac machines. The effectiveness of the proposed battery charger is experimentally demonstrated on a prototype electric scooter, equipped with two Li-ion battery packs rated 260 V, 20 A

    Realization of a 10 kW MES power to methane plant based on unified AC/DC converter

    Get PDF
    This paper presents a galvanic isolated multi output AC/DC topology that is suitable for Microbial electrosynthesis (MES) based Power to Methane energy storage systems. The presented scheme utilizes a three phase back to back converters, a single-input and multiple-output three phase transformer, single diode rectifiers and buck converters that employ a proper interconnection between MES cells and the mains. The proposed topology merges all the required single phase AC/DC converters as a unified converter which reduces the overall system size and provides system integrity and overall controllability. The proposed control scheme allows to achieve the following desired goals:1) Simultaneous control of all cells; 2) Absorbing power from the grid and covert to methane when the electricity price goes down; 3) the power factor and the quality of grid current is under control; 4) Supplying MES cells at the optimal operating point. For verification of system performance, Real time simulation results that are obtained from a 10-kW MES energy storage are presented.Postprint (author's final draft

    Linearized large signal modeling, analysis, and control design of phase-controlled series-parallel resonant converters using state feedback

    Get PDF
    This paper proposes a linearized large signal state-space model for the fixed-frequency phase-controlled series-parallel resonant converter. The proposed model utilizes state feedback of the output filter inductor current to perform linearization. The model combines multiple-frequency and average state-space modeling techniques to generate an aggregate model with dc state variables that are relatively easier to control and slower than the fast resonant tank dynamics. The main objective of the linearized model is to provide a linear representation of the converter behavior under large signal variation which is suitable for faster simulation and large signal estimation/calculation of the converter state variables. The model also provides insight into converter dynamics as well as a simplified reduced order transfer function for PI closed-loop design. Experimental and simulation results from a detailed switched converter model are compared with the proposed state-space model output to verify its accuracy and robustness

    A Control Scheme for an AC-DC Single-Stage Buck-Boost PFC Converter with Improved Output Ripple Reduction

    Get PDF
    AC-DC power factor correction (PFC) single-stage converters are attractive because of their cost and their simplicity. In these converters, both PFC and power conversion are done at the same time using a single converter that regulates the output. Since they have only a single controller, these converters operate with an intermediate transformer primary-side DC bus voltage that is unregulated and is dependent on the converters’ operating conditions and component values. This means that the DC bus voltage can vary significantly as line and load conditions are changed. Such a variable DC bus voltage makes it difficult to optimally design the converter transformer as well as the DC bus capacitor. One previously proposed single-stage AC-DC converter, the Single-Stage Buck-Boost Direct Energy Transfer (SSBBDET) converter has a clamping mechanism that can clamp the DC bus voltage to a pre-set limit. The clamping mechanism, however, superimposes a low frequency 120 Hz AC component on the output DC voltage so that some means must be taken to reduce this component. These means, however, make the converter transient slow and sluggish. The main objective of this thesis is to minimize the 120 Hz output ripple component and to improve the dynamic response of the SSBBDET converter by using a new control scheme. In the thesis, the operation of the SSBBDET converter is reviewed and the proposed control method is introduced and explained in detail. Key design considerations for the design of the converter controller are discussed and the converter’s ability to operate with fixed DC bus voltage, low output ripple and fast dynamic response is confirmed with experimental results obtained from a prototype converter

    Dynamic modeling of pwm and single-switch single-stage power factor correction converters

    Get PDF
    The concept of averaging has been used extensively in the modeling of power electronic circuits to overcome their inherent time-variant nature. Among various methods, the PWM switch modeling approach is most widely accepted in the study of closed-loop stability and transient response because of its accuracy and simplicity. However, a non-ideal PWM switch model considering conduction losses is not available except for converters operating in continuous conduction mode (CCM) and under small ripple conditions. Modeling of conductor losses under large ripple conditions has not been reported in the open literature, especially when the converter operates in discontinuous conduction mode (DCM). In this dissertation, new models are developed to include conduction losses in the non-ideal PWM switch model under CCM and DCM conditions. The developed model is verified through two converter examples and the effect of conduction losses on the steady state and dynamic responses of the converter is also studied. Another major constraint of the PWM switch modeling approach is that it heavily relies on finding the three-terminal PWM switch. This requirement severely limits its application in modeling single-switch single-stage power factor correction (PFC) converters, where more complex topological structures and switching actions are often encountered. In this work, we developed a new modeling approach which extends the PWM switch concept by identifying the charging and discharging voltages applied to the inductors. The new method can be easily applied to derive large-signal models for a large group of PFC converters and the procedure is elaborated through a specific example. Finally, analytical results regarding harmonic contents and power factors of various PWM converters in PFC applications are also presented here

    Power Quality Improvement and Low Voltage Ride through Capability in Hybrid Wind-PV Farms Grid-Connected Using Dynamic Voltage Restorer

    Get PDF
    © 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission.This paper proposes the application of a dynamic voltage restorer (DVR) to enhance the power quality and improve the low voltage ride through (LVRT) capability of a three-phase medium-voltage network connected to a hybrid distribution generation system. In this system, the photovoltaic (PV) plant and the wind turbine generator (WTG) are connected to the same point of common coupling (PCC) with a sensitive load. The WTG consists of a DFIG generator connected to the network via a step-up transformer. The PV system is connected to the PCC via a two-stage energy conversion (dc-dc converter and dc-ac inverter). This topology allows, first, the extraction of maximum power based on the incremental inductance technique. Second, it allows the connection of the PV system to the public grid through a step-up transformer. In addition, the DVR based on fuzzy logic controller is connected to the same PCC. Different fault condition scenarios are tested for improving the efficiency and the quality of the power supply and compliance with the requirements of the LVRT grid code. The results of the LVRT capability, voltage stability, active power, reactive power, injected current, and dc link voltage, speed of turbine, and power factor at the PCC are presented with and without the contribution of the DVR system.Peer reviewe

    Solid state transformer technologies and applications: a bibliographical survey

    Get PDF
    This paper presents a bibliographical survey of the work carried out to date on the solid state transformer (SST). The paper provides a list of references that cover most work related to this device and a short discussion about several aspects. The sections of the paper are respectively dedicated to summarize configurations and control strategies for each SST stage, the work carried out for optimizing the design of high-frequency transformers that could adequately work in the isolation stage of a SST, the efficiency of this device, the various modelling approaches and simulation tools used to analyze the performance of a SST (working a component of a microgrid, a distribution system or just in a standalone scenario), and the potential applications that this device is offering as a component of a power grid, a smart house, or a traction system.Peer ReviewedPostprint (published version
    corecore