464 research outputs found

    Modeling and Control of a New Robotic Deburring System

    Get PDF

    Virtual Prototyping of a Compliant Spindle for Robotic Deburring

    Get PDF
    At the current state-of-the-art, Robotic Deburring (RD) has been successfully adopted in many industrial applications, but it still needs improvements in terms of final quality. In fact, the effectiveness of a RD process is highly influenced by the limited accuracyof the robot motions and by the unpredictable variety of burr size/shape. Tool compliance partially solves the problem, although dedicated engineering design tools are strictly needed, in order to identify those optimized parameters and RD strategies that allow achieving the best quality and cost-effectiveness. In this context, the present paper proposes a CAD-based Virtual Prototype (VP) of a pneumatic compliant spindle, suitable to assess the process efficiency in different case scenarios. The proposed VP is created by integrating a 3D multi-body model of the spindle mechanical structure with the behavioural model of the process forces, as adapted from previous literature. Numerical simulations are provided, concerning the prediction of both cutting forces and surface finishing accuracy

    digital factory technologies for robotic automation and enhanced manufacturing cell design

    Get PDF
    The fourth industrial revolution is characterised by the increased use of digital tools, allowing for the virtual representation of a real production environment at different levels, from the entire production plant to a single machine or a specific process or operation. In this framework, Digital Factory technologies, based on the employment of digital modelling and simulation tools, can be used for short-term analysis and validation of production control strategies or for medium term production planning or production system design/redesign. In this research work, a Digital Factory methodology is proposed to support the enhancement of an existing manufacturing cell for the fabrication of aircraft engine turbine vanes via robotic automation of its deburring station. To configure and verify the correct layout of the upgraded manufacturing cell with the aim to increase its performance in terms of resource utilization and throughput time, 3D Motion Simulation and Discrete Event Simulation are jointly employed for the modeling and simulation of different cell settings for proper layout configuration, safe motion planning and resource utilization improvement. Validation of the simulation model is carried out by collecting actual data from the physical reconfigured manufacturing cell and comparing these data to the model forecast with the aim to adapt the digital model accordingly to closely represent the physical manufacturing system

    Robotic Machining from Programming to Process Control

    Get PDF

    Dynamic simulation of task constrained of a rigid-flexible manipulator

    Full text link
    A rigid-flexible manipulator may be assigned tasks in a moving environment where the winds or vibrations affect the position and/or orientation of surface of operation. Consequently, losses of the contact and perhaps degradation of the performance may occur as references are changed. When the environment is moving, knowledge of the angle α between the contact surface and the horizontal is required at every instant. In this paper, different profiles for the time varying angle α are proposed to investigate the effect of this change into the contact force and the joint torques of a rigid-flexible manipulator. The coefficients of the equation of the proposed rotating surface are changing with time to determine the new X and Y coordinates of the moving surface as the surface rotates

    Adaptive Robot Framework: Providing Versatility and Autonomy to Manufacturing Robots Through FSM, Skills and Agents

    Get PDF
    207 p.The main conclusions that can be extracted from an analysis of the current situation and future trends of the industry,in particular manufacturing plants, are the following: there is a growing need to provide customization of products, ahigh variation of production volumes and a downward trend in the availability of skilled operators due to the ageingof the population. Adapting to this new scenario is a challenge for companies, especially small and medium-sizedenterprises (SMEs) that are suffering first-hand how their specialization is turning against them.The objective of this work is to provide a tool that can serve as a basis to face these challenges in an effective way.Therefore the presented framework, thanks to its modular architecture, allows focusing on the different needs of eachparticular company and offers the possibility of scaling the system for future requirements. The presented platform isdivided into three layers, namely: interface with robot systems, the execution engine and the application developmentlayer.Taking advantage of the provided ecosystem by this framework, different modules have been developed in order toface the mentioned challenges of the industry. On the one hand, to address the need of product customization, theintegration of tools that increase the versatility of the cell are proposed. An example of such tools is skill basedprogramming. By applying this technique a process can be intuitively adapted to the variations or customizations thateach product requires. The use of skills favours the reuse and generalization of developed robot programs.Regarding the variation of the production volumes, a system which permits a greater mobility and a faster reconfigurationis necessary. If in a certain situation a line has a production peak, mechanisms for balancing the loadwith a reasonable cost are required. In this respect, the architecture allows an easy integration of different roboticsystems, actuators, sensors, etc. In addition, thanks to the developed calibration and set-up techniques, the system canbe adapted to new workspaces at an effective time/cost.With respect to the third mentioned topic, an agent-based monitoring system is proposed. This module opens up amultitude of possibilities for the integration of auxiliary modules of protection and security for collaboration andinteraction between people and robots, something that will be necessary in the not so distant future.For demonstrating the advantages and adaptability improvement of the developed framework, a series of real usecases have been presented. In each of them different problematic has been resolved using developed skills,demonstrating how are adapted easily to the different casuistic

    Virtual Prototyping of a Flexure-based RCC Device for Automated Assembly

    Get PDF
    The actual use of Industrial Robots (IR) for assembly systems requires the exertion of suitable strategies allowing to overcome shortcomings about IR poor precision and repeatability. In this paper, the practical issues that emerge during common \ue2\u80\u9cpeg-in-hole\ue2\u80\u9d assembly procedures are discussed. In particular, the use of passive Remote Center of Compliance (RCC) devices, capable of compensating the IR non-optimal performance in terms of repeatability, is investigated. The focus of the paper is the design and simulation of a flexure-based RCC that allows the prevention of jamming, due to possible positioning inaccuracies during peg insertion. The proposed RCC architecture comprises a set of flexural hinges, whose behavior is simulated via a CAE tool that provides built-in functions for modelling the motion of compliant members. For given friction coefficients of the contact surfaces, these numerical simulations allow to determine the maximum lateral and angular misalignments effectively manageable by the RCC device
    corecore