10,656 research outputs found

    Covariance pattern mixture models for the analysis of multivariate heterogeneous longitudinal data

    Full text link
    We propose a novel approach for modeling multivariate longitudinal data in the presence of unobserved heterogeneity for the analysis of the Health and Retirement Study (HRS) data. Our proposal can be cast within the framework of linear mixed models with discrete individual random intercepts; however, differently from the standard formulation, the proposed Covariance Pattern Mixture Model (CPMM) does not require the usual local independence assumption. The model is thus able to simultaneously model the heterogeneity, the association among the responses and the temporal dependence structure. We focus on the investigation of temporal patterns related to the cognitive functioning in retired American respondents. In particular, we aim to understand whether it can be affected by some individual socio-economical characteristics and whether it is possible to identify some homogenous groups of respondents that share a similar cognitive profile. An accurate description of the detected groups allows government policy interventions to be opportunely addressed. Results identify three homogenous clusters of individuals with specific cognitive functioning, consistent with the class conditional distribution of the covariates. The flexibility of CPMM allows for a different contribution of each regressor on the responses according to group membership. In so doing, the identified groups receive a global and accurate phenomenological characterization.Comment: Published at http://dx.doi.org/10.1214/15-AOAS816 in the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Approximate Inference in Continuous Determinantal Point Processes

    Full text link
    Determinantal point processes (DPPs) are random point processes well-suited for modeling repulsion. In machine learning, the focus of DPP-based models has been on diverse subset selection from a discrete and finite base set. This discrete setting admits an efficient sampling algorithm based on the eigendecomposition of the defining kernel matrix. Recently, there has been growing interest in using DPPs defined on continuous spaces. While the discrete-DPP sampler extends formally to the continuous case, computationally, the steps required are not tractable in general. In this paper, we present two efficient DPP sampling schemes that apply to a wide range of kernel functions: one based on low rank approximations via Nystrom and random Fourier feature techniques and another based on Gibbs sampling. We demonstrate the utility of continuous DPPs in repulsive mixture modeling and synthesizing human poses spanning activity spaces

    2.5D multi-view gait recognition based on point cloud registration

    Get PDF
    This paper presents a method for modeling a 2.5-dimensional (2.5D) human body and extracting the gait features for identifying the human subject. To achieve view-invariant gait recognition, a multi-view synthesizing method based on point cloud registration (MVSM) to generate multi-view training galleries is proposed. The concept of a density and curvature-based Color Gait Curvature Image is introduced to map 2.5D data onto a 2D space to enable data dimension reduction by discrete cosine transform and 2D principle component analysis. Gait recognition is achieved via a 2.5D view-invariant gait recognition method based on point cloud registration. Experimental results on the in-house database captured by a Microsoft Kinect camera show a significant performance gain when using MVSM
    • …
    corecore