2,407 research outputs found

    A Literature Survey on Resource Management Techniques, Issues and Challenges in Cloud Computing

    Get PDF
    Cloud computing is a large scale distributed computing which provides on demand services for clients. Cloud Clients use web browsers, mobile apps, thin clients, or terminal emulators to request and control their cloud resources at any time and anywhere through the network. As many companies are shifting their data to cloud and as many people are being aware of the advantages of storing data to cloud, there is increasing number of cloud computing infrastructure and large amount of data which lead to the complexity management for cloud providers. We surveyed the state-of-the-art resource management techniques for IaaS (infrastructure as a service) in cloud computing. Then we put forward different major issues in the deployment of the cloud infrastructure in order to avoid poor service delivery in cloud computing

    Energy-Efficient Fault-Tolerant Scheduling Algorithm for Real-Time Tasks in Cloud-Based 5G Networks

    Full text link
    © 2013 IEEE. Green computing has become a hot issue for both academia and industry. The fifth-generation (5G) mobile networks put forward a high request for energy efficiency and low latency. The cloud radio access network provides efficient resource use, high performance, and high availability for 5G systems. However, hardware and software faults of cloud systems may lead to failure in providing real-time services. Developing fault tolerance technique can efficiently enhance the reliability and availability of real-time cloud services. The core idea of fault-tolerant scheduling algorithm is introducing redundancy to ensure that the tasks can be finished in the case of permanent or transient system failure. Nevertheless, the redundancy incurs extra overhead for cloud systems, which results in considerable energy consumption. In this paper, we focus on the problem of how to reduce the energy consumption when providing fault tolerance. We first propose a novel primary-backup-based fault-tolerant scheduling architecture for real-time tasks in the cloud environment. Based on the architecture, we present an energy-efficient fault-tolerant scheduling algorithm for real-time tasks (EFTR). EFTR adopts a proactive strategy to increase the system processing capacity and employs a rearrangement mechanism to improve the resource utilization. Simulation experiments are conducted on the CloudSim platform to evaluate the feasibility and effectiveness of EFTR. Compared with the existing fault-tolerant scheduling algorithms, EFTR shows excellent performance in energy conservation and task schedulability

    Resource Management and Scheduling for Big Data Applications in Cloud Computing Environments

    Get PDF
    This chapter presents software architectures of the big data processing platforms. It will provide an in-depth knowledge on resource management techniques involved while deploying big data processing systems on cloud environment. It starts from the very basics and gradually introduce the core components of resource management which we have divided in multiple layers. It covers the state-of-art practices and researches done in SLA-based resource management with a specific focus on the job scheduling mechanisms.Comment: 27 pages, 9 figure

    Extended Fault Taxonomy of SOA-Based Systems

    Get PDF
    Service Oriented Architecture (SOA) is considered as a standard for enterprise software development. The main characteristics of SOA are dynamic discovery and composition of software services in a heterogeneous environment. These properties pose newer challenges in fault management of SOA-based systems (SBS). A proper understanding of different faults in an SBS is very necessary for effective fault handling. A comprehensive three-fold fault taxonomy is presented here that covers distributed, SOA specific and non-functional faults in a holistic manner. A comprehensive fault taxonomy is a key starting point for providing techniques and methods for accessing the quality of a given system. In this paper, an attempt has been made to outline several SBSs faults into a well-structured taxonomy that may assist developers to plan suitable fault repairing strategies. Some commonly emphasized fault recovery strategies are also discussed. Some challenges that may occur during fault handling of SBSs are also mentioned
    corecore