26,318 research outputs found

    Facilitating the analysis of a UK national blood service supply chain using distributed simulation

    Get PDF
    In an attempt to investigate blood unit ordering policies, researchers have created a discrete-event model of the UK National Blood Service (NBS) supply chain in the Southampton area of the UK. The model has been created using Simul8, a commercial-off-the-shelf discrete-event simulation package (CSP). However, as more hospitals were added to the model, it was discovered that the length of time needed to perform a single simulation severely increased. It has been claimed that distributed simulation, a technique that uses the resources of many computers to execute a simulation model, can reduce simulation runtime. Further, an emerging standardized approach exists that supports distributed simulation with CSPs. These CSP Interoperability (CSPI) standards are compatible with the IEEE 1516 standard The High Level Architecture, the defacto interoperability standard for distributed simulation. To investigate if distributed simulation can reduce the execution time of NBS supply chain simulation, this paper presents experiences of creating a distributed version of the CSP Simul8 according to the CSPI/HLA standards. It shows that the distributed version of the simulation does indeed run faster when the model reaches a certain size. Further, we argue that understanding the relationship of model features is key to performance. This is illustrated by experimentation with two different protocols implementations (using Time Advance Request (TAR) and Next Event Request (NER)). Our contribution is therefore the demonstration that distributed simulation is a useful technique in the timely execution of supply chains of this type and that careful analysis of model features can further increase performance

    THE "POWER" OF TEXT PRODUCTION ACTIVITY IN COLLABORATIVE MODELING : NINE RECOMMENDATIONS TO MAKE A COMPUTER SUPPORTED SITUATION WORK

    Get PDF
    Language is not a direct translation of a speaker’s or writer’s knowledge or intentions. Various complex processes and strategies are involved in serving the needs of the audience: planning the message, describing some features of a model and not others, organizing an argument, adapting to the knowledge of the reader, meeting linguistic constraints, etc. As a consequence, when communicating about a model, or about knowledge, there is a complex interaction between knowledge and language. In this contribution, we address the question of the role of language in modeling, in the specific case of collaboration over a distance, via electronic exchange of written textual information. What are the problems/dimensions a language user has to deal with when communicating a (mental) model? What is the relationship between the nature of the knowledge to be communicated and linguistic production? What is the relationship between representations and produced text? In what sense can interactive learning systems serve as mediators or as obstacles to these processes
    • …
    corecore