202 research outputs found

    Foundations of Multi-Paradigm Modelling for Cyber-Physical Systems

    Get PDF
    This open access book coherently gathers well-founded information on the fundamentals of and formalisms for modelling cyber-physical systems (CPS). Highlighting the cross-disciplinary nature of CPS modelling, it also serves as a bridge for anyone entering CPS from related areas of computer science or engineering. Truly complex, engineered systems—known as cyber-physical systems—that integrate physical, software, and network aspects are now on the rise. However, there is no unifying theory nor systematic design methods, techniques or tools for these systems. Individual (mechanical, electrical, network or software) engineering disciplines only offer partial solutions. A technique known as Multi-Paradigm Modelling has recently emerged suggesting to model every part and aspect of a system explicitly, at the most appropriate level(s) of abstraction, using the most appropriate modelling formalism(s), and then weaving the results together to form a representation of the system. If properly applied, it enables, among other global aspects, performance analysis, exhaustive simulation, and verification. This book is the first systematic attempt to bring together these formalisms for anyone starting in the field of CPS who seeks solid modelling foundations and a comprehensive introduction to the distinct existing techniques that are multi-paradigmatic. Though chiefly intended for master and post-graduate level students in computer science and engineering, it can also be used as a reference text for practitioners

    Verifying the Correctness of UML Statechart Outpatient Clinic Based on Common Modeling Language and SMV

    Get PDF
    Unified-modelling language (UML) is a standard general purpose modelling language, which is widely, used in system design of banking, biological, plantation and healthcare. Recently, there are many systems of healthcare are modeled using behavioral diagram such as UML statechart for design purposes. However, the behavior of healthcare statechart is rarely verified to ensure it is behaving as we needed. In software engineering, a software should be verified before it is transform to the further phases. In this paper, a statechart of outpatient clinic is verified to ensuring the correctness of its design. Therefore, to achieve our objective, we have applied Common Modeling Language (CML) and SMV model checker for verification formal system modeling and specification of property of statechart outpatient clinic. The result shows that the statechart of outpatient clinic is behave as required and the statechart is allowable to transform to the next phase

    Simulation based design environment for multi-agent systems in buildings

    Get PDF
    With increasing experience and understanding of the behavior of users in buildings, it is very often difficult to properly build a control system that operates in the real world. To explore such a potential, this paper addresses a new approach to building automation systems that utilizes hybrids systems in order to model large scale systems typically arising in multi-agents. In fact hybrid systems are crucial for solving complex problems and for designing real-time controllers that can be used to automatically regulate HVAC (Heating, Ventilation and Air-Conditioning) systems and building components. A statechart formalism is also used for modelling of the entire building system behaviour in the structural analysis paradigm, in order to achieve a comfortable indoor climate while fulfilling operating constraints. Particularity, this paper concerns the relevance and reliability of integrating control and building performance simulation environments by run-time coupling, over TCP/IP protocol suite. In addition, this paper involves a case-study with two important steps; first consists of experiments obtained in TU Delft test-cell, and then simulation results are obtained with the use of run-time coupling approach

    Software framework for the development of context-aware reconfigurable systems

    Get PDF
    In this project we propose a new software framework for the development of context-aware and secure controlling software of distributed reconfigurable systems. Context-awareness is a key feature allowing the adaptation of systems behaviour according to the changing environment. We introduce a new definition of the term “context” for reconfigurable systems then we define a new context modelling and reasoning approach. Afterwards, we define a meta-model of context-aware reconfigurable applications that paves the way to the proposed framework. The proposed framework has a three-layer architecture: reconfiguration, context control, and services layer, where each layer has its well-defined role. We define also a new secure conversation protocol between distributed trustless parts based on the blockchain technology as well as the elliptic curve cryptography. To get better correctness and deployment guarantees of applications models in early development stages, we propose a new UML profile called GR-UML to add new semantics allowing the modelling of probabilistic scenarios running under memory and energy constraints, then we propose a methodology using transformations between the GR-UML, the GR-TNCES Petri nets formalism, and the IEC 61499 function blocks. A software tool implementing the methodology concepts is developed. To show the suitability of the mentioned contributions two case studies (baggage handling system and microgrids) are considered.In diesem Projekt schlagen wir ein Framework für die Entwicklung von kontextbewussten, sicheren Anwendungen von verteilten rekonfigurierbaren Systemen vor. Kontextbewusstheit ist eine Schlüsseleigenschaft, die die Anpassung des Systemverhaltens an die sich ändernde Umgebung ermöglicht. Wir führen eine Definition des Begriffs ``Kontext" für rekonfigurierbare Systeme ein und definieren dann einen Kontextmodellierungs- und Reasoning-Ansatz. Danach definieren wir ein Metamodell für kontextbewusste rekonfigurierbare Anwendungen, das den Weg zum vorgeschlagenen Framework ebnet. Das Framework hat eine dreischichtige Architektur: Rekonfigurations-, Kontextkontroll- und Dienste-Schicht, wobei jede Schicht ihre wohldefinierte Rolle hat. Wir definieren auch ein sicheres Konversationsprotokoll zwischen verteilten Teilen, das auf der Blockchain-Technologie sowie der elliptischen Kurven-Kryptographie basiert. Um bessere Korrektheits- und Einsatzgarantien für Anwendungsmodelle zu erhalten, schlagen wir ein UML-Profil namens GR-UML vor, um Semantik umzufassen, die die Modellierung probabilistischer Szenarien unter Speicher- und Energiebeschränkungen ermöglicht. Dann schlagen wir eine Methodik vor, die Transformationen zwischen GR-UML, dem GR-TNCES-Petrinetz-Formalismus und den IEC 61499-Funktionsblöcken verwendet. Es wird ein Software entwickelt, das die Konzepte der Methodik implementiert. Um die Eignung der genannten Beiträge zu zeigen, werden zwei Fallstudien betrachtet

    Towards the Correctness of Software Behavior in UML: A Model Checking Approach Based on Slicing

    Get PDF
    Embedded systems are systems which have ongoing interactions with their environments, accepting requests and producing responses. Such systems are increasingly used in applications where failure is unacceptable: traffic control systems, avionics, automobiles, etc. Correct and highly dependable construction of such systems is particularly important and challenging. A very promising and increasingly attractive method for achieving this goal is using the approach of formal verification. A formal verification method consists of three major components: a model for describing the behavior of the system, a specification language to embody correctness requirements, and an analysis method to verify the behavior against the correctness requirements. This Ph.D. addresses the correctness of the behavioral design of embedded systems, using model checking as the verification technology. More precisely, we present an UML-based verification method that checks whether the conditions on the evolution of the embedded system are met by the model. Unfortunately, model checking is limited to medium size systems because of its high space requirements. To overcome this problem, this Ph.D. suggests the integration of the slicing (reduction) technique

    Modularity and part-whole compositionality for computing the state semantics of statecharts

    Get PDF
    The paper discusses modularity and compositionality issues in state-based modeling formalisms and presents related recent research results. Part-Whole Statecharts provide modular constructs to traditional Statecharts in order to allow incremental and fully reusable composition of behavioral abstractions, enforcing explicitly the coordinated systemic behavior and bringing benefits to subsequent modeling and implementation phases. The paper shows that Part-Whole Statecharts have a computable semantics, which can be specified through a constraint-driven specification method. Such a method allows to specify and verify the intended meaning of states directly at design time, thus avoiding to employ less effective verification techniques, such as exhaustive testing or model checking

    Proceedings of the 2nd EICS Workshop on Engineering Interactive Computer Systems with SCXML

    Get PDF

    Safety‐oriented discrete event model for airport A‐SMGCS reliability assessment

    Get PDF
    A detailed analysis of State of the Art Technologies and Procedures into Airport Advanced-Surface Movement Guidance and Control Systems has been provided in this thesis, together with the review ofStatistical Monte Carlo Analysis, Reliability Assessment and Petri Nets theories. This practical and theoretical background has lead the author to the conclusion that there is a lack of linkage in between these fields. At the same of time the rapid increasing of Air Traffic all over the world, has brought in evidence the urgent need of practical instruments able to identify and quantify the risks connected with Aircraft operations on the ground, since the Airport has shown to be the actual ‘bottle neck’ of the entire Air Transport System. Therefore, the only winning approach to such a critical matter has to be multi-disciplinary, sewing together apparently different subjects, coming from the most disparate areas of interest and trying to fulfil the gap. The result of this thesis work has come to a start towards the end, when a Timed Coloured Petri Net (TCPN) model of a ‘sample’ Airport A-SMGCS has been developed, that is capable of taking into account different orders of questions arisen during these recent years and tries to give them some good answers. The A-SMGCS Airport model is, in the end, a parametric tool relying on Discrete Event System theory, able to perform a Reliability Analysis of the system itself, that: • uses a Monte Carlo Analysis applied to a Timed Coloured Petri Net, whose purpose is to evaluate the Safety Level of Surface Movements along an Airport • lets the user to analyse the impact of Procedures and Reliability Indexes of Systems such as Surface Movement Radars, Automatic Dependent Surveillance-Broadcast, Airport Lighting Systems, Microwave Sensors, and so on… onto the Safety Level of Airport Aircraft Transport System • not only is a valid instrument in the Design Phase, but it is useful also into the Certifying Activities an in monitoring the Safety Level of the above mentioned System with respect to changes to Technologies and different Procedures.This TCPN model has been verified against qualitative engineering expectations by using simulation experiments and occupancy time schedules generated a priori. Simulation times are good, and since the model has been written into Simulink/Stateflow programming language, it can be compiled to run real-time in C language (Real-time workshop and Stateflow Coder), thus relying on portable code, able to run virtually on any platform, giving even better performances in terms of execution time. One of the most interesting applications of this work is the estimate, for an Airport, of the kind of A-SMGCS level of implementation needed (Technical/Economical convenience evaluation). As a matter of fact, starting from the Traffic Volume and choosing the kind of Ground Equipment to be installed, one can make predictions about the Safety Level of the System: if the value is compliant with the TLS required by ICAO, the A-SMGCS level of Implementation is sufficiently adequate. Nevertheless, even if the Level of Safety has been satisfied, some delays due to reduced or simplified performances (even if Safety is compliant) of some of the equipment (e.g. with reference to False Alarm Rates) can lead to previously unexpected economical consequences, thus requiring more accurate systems to be installed, in order to meet also Airport economical constraints. Work in progress includes the analysis of the effect of weather conditions and re-sequencing of a given schedule. The effect of re-sequencing a given schedule is not yet enough realistic since the model does not apply inter arrival and departure separations. However, the model might show some effect on different sequences based on runway occupancy times. A further developed model containing wake turbulence separation conditions would be more sensitive for this case. Hence, further work will be directed towards: • The development of On-Line Re-Scheduling based on the available actual runway/taxiway configuration and weather conditions. • The Engineering Safety Assessment of some small Italian Airport A-SMGCSs (Model validation with real data). • The application of Stochastic Differential Equations systems in order to evaluate the collision risk on the ground inside the Place alone on the Petri Net, in the event of a Short Term Conflict Alert (STCA), by adopting Reich Collision Risk Model. • Optimal Air Traffic Control Algorithms Synthesis (Adaptive look-ahead Optimization), by Dynamically Timed Coloured Petri Nets, together with the implementation of Error-Recovery Strategies and Diagnosis Functions

    Workshop on Modelling of Objects, Components, and Agents, Aarhus, Denmark, August 27-28, 2001

    Get PDF
    This booklet contains the proceedings of the workshop Modelling of Objects, Components, and Agents (MOCA'01), August 27-28, 2001. The workshop is organised by the CPN group at the Department of Computer Science, University of Aarhus, Denmark and the "Theoretical Foundations of Computer Science" Group at the University of Hamburg, Germany. The papers are also available in electronic form via the web pages: http://www.daimi.au.dk/CPnets/workshop01

    A web application user interface specification language based on statecharts

    Get PDF
    The Internet today has a phenomenal reach---right into the homes of a vast audience worldwide. Some organisations (and individuals) see this medium as a good opportunity for extending the reach of their computer systems. One popular approach used for such endeavours is to run an application on a server, using web technology for displaying its user interface (UI) remotely. Developing such a web-based UI can be quite tedious---it is a concurrent, distributed program which has to run in a hostile environment. Furthermore, the platform on which it is implemented (the web) was not originally intended for such usage. A web framework is a collection of software components which provides its users with support for developing and executing web-based UIs. In part, web frameworks can be seen as being analogous to interpreters: given a specification of a UI using a specification technique dictated by the framework, server components of the framework can present the UI using web technology. Topics related to web frameworks are scarce in the academic literature, but abound in industry and open discussion forums. Similarly, the designers of web frameworks seldom found their work on existing theory in the literature. This study is an attempt to bridge this gap. It is focused on two aspects of web frameworks: the specification technique a framework mandates, and how such a specification can subsequently be used to present a UI via web technology. As part of this study, a survey was conducted of 80 open source web frameworks. Based on the survey, a partial overview of the domain of web frameworks is given, covering what is seen as being typically required of a web framework and covering specification techniques that are used by existing frameworks. Two taxonomies are proposed of the strategies web frameworks use for specifying two aspects of web UIs. Using the web as platform implies adherence to certain (intended) architectural constraints. Web framework designers often strain against these constraints. However, another point of view is to recognise that the success of the web platform is made possible precisely because of its intended architecture. (And the success of the web is surely the principal motivation for using it for remote UIs in the first place.) With the bias of this viewpoint, a specification technique is proposed for web-based UIs. This technique is based on the well-known formalism of statecharts, with semantics explicitly defined in terms of the intended architectural components and constraints of the web. The design of a web framework for presenting a UI so specified is also proposed (based on the theoretical background given, as well as two prototype implementations which have been developed).Dissertation (MSc)--University of Pretoria, 2007.Computer Scienceunrestricte
    • …
    corecore