122 research outputs found

    Towards Digital Twin-enabled DevOps for CPS providing Architecture-Based Service Adaptation & Verification at Runtime

    Full text link
    Industrial Product-Service Systems (IPSS) denote a service-oriented (SO) way of providing access to CPS capabilities. The design of such systems bears high risk due to uncertainty in requirements related to service function and behavior, operation environments, and evolving customer needs. Such risks and uncertainties are well known in the IT sector, where DevOps principles ensure continuous system improvement through reliable and frequent delivery processes. A modular and SO system architecture complements these processes to facilitate IT system adaptation and evolution. This work proposes a method to use and extend the Digital Twins (DTs) of IPSS assets for enabling the continuous optimization of CPS service delivery and the latter's adaptation to changing needs and environments. This reduces uncertainty during design and operations by assuring IPSS integrity and availability, especially for design and service adaptations at CPS runtime. The method builds on transferring IT DevOps principles to DT-enabled CPS IPSS. The chosen design approach integrates, reuses, and aligns the DT processing and communication resources with DevOps requirements derived from literature. We use these requirements to propose a DT-enabled self-adaptive CPS model, which guides the realization of DT-enabled DevOps in CPS IPSS. We further propose detailed design models for operation-critical DTs that integrate CPS closed-loop control and architecture-based CPS adaptation. This integrated approach enables the implementation of A/B testing as a use case and central concept to enable CPS IPSS service adaptation and reconfiguration. The self-adaptive CPS model and DT design concept have been validated in an evaluation environment for operation-critical CPS IPSS. The demonstrator achieved sub-millisecond cycle times during service A/B testing at runtime without causing CPS operation interferences and downtime.Comment: Final published version appearing in 17th Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS 2022

    ReverCSP: Time-Travelling in CSP Computations

    Full text link
    [EN] This paper presents reverCSP, a tool to animate both forward and backward CSP computations. This ability to reverse computations can be done step by step or backtracking to a given desired state of interest. reverCSP allows us to reverse computations exactly in the same order in which they happened, or also in a causally-consistent way. Therefore, reverCSP is a tool that can be especially useful to comprehend, analyze, and debug computations. reverCSP is an open-source project publicly available for the community. We describe the tool and its functionality, and we provide implementation details so that it can be reimplemented for other languages.This work has been partially supported by the EU (FEDER) and the Spanish MCI/AEI under grants TIN2016-76843-C4-1-R and PID2019- 104735RB-C41, and by the Generalitat Valenciana under grant Prometeo/2019/098 (DeepTrust).Galindo-Jiménez, CS.; Nishida, N.; Silva, J.; Tamarit, S. (2020). ReverCSP: Time-Travelling in CSP Computations. Springer. 239-245. https://doi.org/10.1007/978-3-030-52482-1_14S239245Bernadet, A., Lanese, I.: A modular formalization of reversibility for concurrent models and languages. In: Proceedings of ICE 2016, EPTCS (2016)Brown, G., Sabry, A.: Reversible communicating processes. Electron. Proc. Theor. Comput. Sci. 203, 45–59 (2016)Conserva Filhoa, M., Oliveira, M., Sampaio, A., Cavalcanti, A.: Compositional and local livelock analysis for CSP. Inf. Process. Lett 133, 21–25 (2018)Danos, V., Krivine, J.: Reversible communicating systems. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 292–307. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28644-8_19Elnozahy, E.N.M., Alvisi, L., Wang, Y.-M., Johnson, D.B.: A survey of rollback- recovery protocols in message-passing systems. ACM Comput. Surv. 34(3), 375–408 (2002)Fang, Y., Zhu, H., Zeyda, F., Fei, Y.: Modeling and analysis of the disruptor framework in csp. In: Proceedings of CCWC 2018. IEEE Computer Society (2018)Ladkin, P.B., Simons, B.B.: Static deadlock analysis for CSP-type communications. In: Fussell, D.S., Malek, M. (eds.) Responsive Computer Systems: Steps Toward Fault-Tolerant Real-Time Systems. The Springer International Series in Engineering and Computer Science, vol. 297, pp. 89–102. Springer, Boston (1995). https://doi.org/10.1007/978-1-4615-2271-3_5Landauer, R.: Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5, 183–191 (1961)Lanese, I., Antares Mezzina, C., Tiezzi, F.: Causal-consistent reversibility. Bull. EATCS 114, 17 (2014)Lanese, I., Nishida, N., Palacios, A., Vidal, G.: CauDEr: a causal-consistent reversible debugger for erlang. In: Gallagher, J.P., Sulzmann, M. (eds.) FLOPS 2018. LNCS, vol. 10818, pp. 247–263. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-90686-7_16Lanese, I., Palacios, A., Vidal, G.: Causal-consistent replay debugging for message passing programs. In: Pérez, J.A., Yoshida, N. (eds.) FORTE 2019. LNCS, vol. 11535, pp. 167–184. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21759-4_10Llorens, M., Oliver, J., Silva, J., Tamarit, S.: Dynamic slicing of concurrent specification languages. Parallel Comput. 53, 1–22 (2016)Llorens, M., Oliver, J., Silva, J., Tamarit, S.: Tracking CSP computations. J. Log. Algebr. Meth. Program. 102, 138–175 (2019)Perera, R., Garg, D., Cheney, J.: Causally consistent dynamic slicing. In Proceedings of CONCUR 2016, LIPIcs, vol. 59, pp. 18:1–18:15 (2016)Phillips, I., Ulidowski, I., Yuen, S.: A reversible process calculus and the modelling of the ERK signalling pathway. In: Glück, R., Yokoyama, T. (eds.) RC 2012. LNCS, vol. 7581, pp. 218–232. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36315-3_18Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice Hall PTR, Upper Saddle River (1997)Zhao, H., Zhu, H., Yucheng, F., Xiao, L.: Modeling and verifying storm using CSP. In: Proceedings of HASE 2019. IEEE Computer Society (2019

    Reversible CSP Computations

    Full text link
    © 2021 IEEE. Personal use of this material is permitted. Permissíon from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertisíng or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.[EN] Reversibility enables a program to be executed both forwards and backwards. This ability allows programmers to backtrack the execution to a previous state. This is essential if the computation is not deterministic because re-running the program forwards may not lead to that state of interest. Reversibility of sequential programs has been well studied and a strong theoretical basis exists. Contrarily, reversibility of concurrent programs is still very young, especially in the practical side. For instance, in the particular case of the Communicating Sequential Processes (CSP) language, reversibility is practically missing. In this article, we present a new technique, including its formal definition and its implementation, to reverse CSP computations. Most of the ideas presented can be directly applied to other concurrent specification languages such as Promela or CCS, but we center the discussion and the implementation on CSP. The technique proposes different forms of reversibility, including strict reversibility and causal-consistent reversibility. On the practical side, we provide an implementation of a system to reverse CSP computations that is able to highlight the source code that is being executed in each forwards/backwards computation step, and that has been optimized to be scalable to real systems.A preliminary version of this work was presented at the 12th Conference on Reversible Computation [31]. The authors would like to thank the anonymous reviewers for their useful comments and constructive feedback that helped them to improve this work. This work was supported in part by the EU (FEDER) and the Spanish MCI/AEI under Grant TIN2016-76843-C4-1-R and Grant PID2019-104735RB-C41, in part by the Generalitat Valenciana under Grant Prometeo/2019/098 (DeepTrust), in part by JSPS KAKENHI under Grant JP17H01722, and in part by TAILOR, a project funded by EU Horizon 2020 research and innovation programme under GA 952215.Galindo-Jiménez, CS.; Nishida, N.; Silva, J.; Tamarit, S. (2021). Reversible CSP Computations. IEEE Transactions on Parallel and Distributed Systems. 32(6):1425-1436. https://doi.org/10.1109/TPDS.2021.3051747S1425143632

    Energy Storage Roadmap for Northeast Ohio 2019: Full Report

    Get PDF
    The 2019 Energy Storage Roadmap examines the trends that are driving growth in energy storage for the electric power grid, transportation, and consumer electronics applications. The report also highlights the commercial and structural assets that Northeast Ohio currently possesses that could enable it to capture an increasing share of what is projected to be a $100 billion market by 2025. While disruptive market forces are causing the ground to shift for the advanced energy industry, this shift will present opportunities for Northeast Ohio to capitalize on innovative technologies being developed regionally that would enable the realization of appreciably greater economic growth. The 2019 Roadmap provides a background on Energy Storage technologies and the role the region currently plays in their development. The Roadmap also provides a vision for how existing local assets can be leveraged in conjunction with funding opportunities for technology innovation to capture a larger share of this high-growth market. The goal of the 2019 Roadmap is to propose how assets and strategies can together be deployed to establish the region as an energy storage activity hub

    Energy Storage Roadmap for Northern Appalachia 2022

    Get PDF
    The Northern Appalachian counties (Western PA, Eastern OH and West Virginia) have legacy energy industry engineering, workforce and research advantages that have made the region a prime location for the development of energy storage manufacturing and deployment. Already over 200 private companies are engaged in the energy storage business regionally. Further assets include the many research universities and laboratories in the region, together with a low cost of living compared to other energy storage clusters. The study identifies the energy storage industry assets and explores strategies for cluster development in Northern Appalachia

    End Use Packaging: A Survey of Customer Perception of Recycling and Environmental Impact of Packaging Materials

    Get PDF
    Studies have shown that traditional food packaging for the fast food industry leach toxic chemicals into the food products. Some of these toxins are known endocrine disruptors, which results in reproductive issues as well as hormone imbalances. Alternatives to traditional food packaging have been addressed with special attention to bioactive, biopolymers, and biodegradable packaging in addition to active and intelligent packaging. The hypothesis states that customers will have high demand for more environmentally sustainable fast food packaging, while the alternative hypothesis states that demand will not be high enough to financially support the costly introduction of more environmental packaging products. The data attained suggest that the hypothesis will not be rejected. However, there are not conclusive results in terms of the alternative hypothesis, as further studies that address economical concerns must be completed. In terms of consumer demand, 94.92% preferred environmentally sustainable packaging over traditional packaging materials

    Selected papers of the "1st International Conference on Nanofluids (ICNf)"

    Get PDF
    This Special Issue of Energies has emerged as a result of the 1st International Conference on Nanofluids (https://icnf2019.com/), which was organized under the auspices of Nanouptake COST Action (Overcoming Barriers to Nanofluids Market Uptake, http://www.nanouptake.eu/) in Castelló (Spain), in June 2019. The foci of ICNf2019 were the production and the characterisation of nanofluids for different areas of applications in the energy fields, namely heat transfer, storage of thermal energy, boiling, and solar systems, as well as industrial applications and health and safety issues. The first conference edition on this topic gathered more than 200 participants from 45 different countries. More than 125 contributions were presented in the nine sections of the congress. Some selected authors were invited to send extended versions of their work to the Energies ICNf2019 Special Issue. After a careful review process, nine articles from six different countries were selected for compilation in this Special Issue: a total of seven full research papers and two reviews. These papers cover a broad range of fundamental and applied research aspects on nanofluid science and development, and reflect the current investigations, knowledge, and challenges encountered in the use of nanofluids for energy applications

    Women in Artificial intelligence (AI)

    Get PDF
    This Special Issue, entitled "Women in Artificial Intelligence" includes 17 papers from leading women scientists. The papers cover a broad scope of research areas within Artificial Intelligence, including machine learning, perception, reasoning or planning, among others. The papers have applications to relevant fields, such as human health, finance, or education. It is worth noting that the Issue includes three papers that deal with different aspects of gender bias in Artificial Intelligence. All the papers have a woman as the first author. We can proudly say that these women are from countries worldwide, such as France, Czech Republic, United Kingdom, Australia, Bangladesh, Yemen, Romania, India, Cuba, Bangladesh and Spain. In conclusion, apart from its intrinsic scientific value as a Special Issue, combining interesting research works, this Special Issue intends to increase the invisibility of women in AI, showing where they are, what they do, and how they contribute to developments in Artificial Intelligence from their different places, positions, research branches and application fields. We planned to issue this book on the on Ada Lovelace Day (11/10/2022), a date internationally dedicated to the first computer programmer, a woman who had to fight the gender difficulties of her times, in the XIX century. We also thank the publisher for making this possible, thus allowing for this book to become a part of the international activities dedicated to celebrating the value of women in ICT all over the world. With this book, we want to pay homage to all the women that contributed over the years to the field of AI
    • …
    corecore