652 research outputs found

    Design Optimization of Folding Solar Powered Autonomous Underwater Vehicles Using Origami Structure

    Get PDF
    Origami, as an application for morphing structure engineering, which has been studied for a long time, has recently made remarkable progress in terms of technology. The most distinctive feature of this technology is the presence of two types, flat mode and folded mode. The origami algorithm enables the conversion of these two modes based on the mathematical formulations. Completion of this algorithm now means that origami is part of the design process and can be applied to applications. This thesis demonstrates a design process for origami-inspired morphing structures that transform between a flat configuration and a folded convex shape. There are many obstacles in the development of the design process. In particular, consideration should be given to the surface difference of the flat configuration and the folded convex mode. In this thesis, I introduce the design process which takes into consideration the origami structure design deeply. To demonstrate this process, I have selected an application which is emerging and interesting, that is, unmanned vehicles. Especially, the design of Autonomous Underwater Vehicles (AUVs) is a difficult challenge since it requires the consideration of various aspects such as mission range, controllability, energy source, and carrying capacity. The Predictive Parameterized Pareto Genetic Algorithm (P3GA) is selected as the optimization method to determine a parameterized Pareto frontier of design options with desired characteristics for a variety of missions for the AUV

    Large Deformable Soft Actuators Using Dielectric Elastomer and Origami Inspired Structures

    Get PDF
    There have been significant developments in the field of robotics. Significant development consists of new configurations, control mechanisms, and actuators based upon its applications. Despite significant improvements in modern robotics, the biologically inspired robots has taken the center stage. Inspired by nature, biologically inspired robots are called ‘soft robots’. Within these robots lies a secret ingredient: the actuator. Soft robotic development has been driven by the idea of developing actuators that are like human muscle and are known as ‘artificial muscle’. Among different materials suitable for the development of artificial muscle, the dielectric elastomer actuator (DEA) is capable of large deformation by applying an electric field. Theoretical formulation for DEA was performed based upon the constitutive hyperelastic models and was validated by using finite element method (FEM) using ABAQUS. For FEM, multistep analysis was performed to apply pre-stretch to the membrane before applying actuation voltage. Based on the validation of DEA, different configurations of DEA were investigated. Helical dielectric elastomer actuator and origami dielectric elastomer actuator were investigated using theoretical modeling. Comparisons were made with FEM to validate the model. This study focus on the theoretical and FEM analysis of strain within the different configuration of DEA and how the actuation strain of the dielectric elastomer can be translated into contraction and/or bending of the actuator

    An Overview of Mechanisms and Patterns with Origami

    Get PDF
    International audienceOrigami (paperfolding) has greatly progressed since its first usage for design of cult objects in Japan, and entertainment in Europe and the USA. It has now entered into artistic areas using many other materials than paper, and has been used as an inspiration for scientific and engineering realizations. This article is intended to illustrate several aspects of origami that are relevant to engineering structures, namely: geometry, pattern generation, strength of material, and mechanisms. It does not provide an exhaustive list of applications nor an in-depth chronology of development of origami patterns, but exemplifies the relationships of origami to other disciplines, with selected examples

    When to Hold and When to Fold: Studies on the topology of origami and linkages

    Get PDF
    Linkages and mechanisms are pervasive in physics and engineering as models for avariety of structures and systems, from jamming to biomechanics. With the increasein physical realizations of discrete shape-changing materials, such as metamaterials,programmable materials, and self-actuating structures, an increased understandingof mechanisms and how they can be designed is crucial. At a basic level, linkagesor mechanisms can be understood to be rigid bars connected at pivots around whichthey can rotate freely. We will have a particular focus on origami-like materials, anextension to linkages with the added constraint of faces. Self-actuated versions typ-ically start flat and when exposed to an external stimulus - such as a temperaturechange or magnetic field - spontaneously fold. Since these structures fold all at once,and the number of folding patterns accessible to a given origami are exponential, theyare prone to folding to a configuration other than the desired one. Other work hassuggested methods for avoiding this misfolding, but it assumes ideal, rigid origami. Here, we expand on these models to account for the elasticity of real structures andintroduce methods for accounting for Gaussian curvature in them. We also explorehow to find and set an upper bound on minimal forcing sets, or the minimum set offolds required to force an origami, and present a graph theory algorithm for findingthem in arbitrary origami. Taken altogether, these origami studies give insight intohow the physical properties of origami influence folding and a new set of tools foravoiding misfolding. Next, we turn back to a more fundamental study of linkagesand present a new method for finding the manifold of their critical points. We thendemonstrate a design protocol that utilizes this manifold to create linkages with tun-able motions, before turning to several example structures, including the four-barlinkage and the Kane-Lubensky chain

    Design and analysis of a foldable / unfoldable corrugated architectural curved envelop

    Get PDF
    11 pagesInternational audienceOrigami and paperfolding techniques may inspire the design of structures that have the ability to be folded and unfolded: their geometry can be changed from an extended, servicing state to a compact one, and back-forth. In traditional Origami, folds are introduced in a sheet of paper (a developable surface) for transforming its shape, with artistic or decorative intent; in recent times the ideas behind origami techniques were transferred in various design disciplines to build developable foldable / unfoldable structures, mostly in aerospace industry. The geometrical arrangement of folds allows a folding mechanism of great efficiency and is often derived from the buckling patterns of simple geometries, like a plane or a cylinder (e.g. Miura-Ori and Yoshimura folding pattern). Here we interest ourselves to the conception of foldable / unfoldable structures for civil engineering and architecture. In those disciplines, the need for folding efficiency comes along with the need for structural efficiency (stiffness); for this purpose we will explore nondevelopable foldable / unfoldable structures: those structures exhibit potential stiffness because, when unfolded, they cannot be flattened to a plane (non-developability). In this paper we propose a classification for foldable / unfoldable surfaces that comprehend non fully developable (and also non fully foldable) surfaces and a method for the description of folding motion. Then we propose innovative geometrical configurations for those structures by generalizing the Miura-Ori folding pattern to non-developable surfaces that, once unfolded, exhibit curvature

    Modeling And Simulation Of a Continious Folding Process Of An Origami Pattern

    Get PDF
    The engineering applications of origami has gathered tremendous attention in recent years. Various aspects of origami have different characteristics based on its application. The shape changing aspect is used in areas where size is a constraint. The structural rigidity aspect is utilized where strength is needed with a minimal increase in weight. When polymer or metal sheets are processed to have origami creases, they exhibit an improvement in mechanical properties. The sheets which create a specific local texture by means of tessellated folds patterns are called folded textured sheets[1]. These sheets are utilized to create fold cores. These light-weight sandwiched structures are heavily used in the aerospace industry, due to its ability to prevent moisture accumulation on the aeronautical structures at higher altitudes. The objective of the current research is to explore a new method for the continuous production of these folded textured sheets. The method uses a laser etching setup to mark the sheet with the origami pattern. The pattern is then formed by dies and passes through a conveyor system which is specifically arranged like a funnel to complete the final stage of the forming process. A simulation approach is utilized to evaluate the method. Results show the feasibility of the process along with its limitations. The design is made to be feasible for scaling up for large scale manufactur

    Multifunctional Foldable Knitted Structures: Fundamentals, Advances and Applications

    Get PDF
    Contemporary multifunctional textiles are based on hi-tech functionalization. Knitted structures can be relatively rapidly designed and produced in a variety of textures due to their composition of many interlacing loop elements and their combinations. Foldable weft-knitted structures exist in a wide range of forms from simple rolls, ribs, and pleats to more complex three-dimensional structures. They exhibit new kind of geometry and deformation mechanisms. Some of them exhibit auxetic potential. Foldable knitted structures are multifunctional and widely usable. They can be produced in a variety of structures, qualities, and dimensions: in panels, fully-fashioned, or seamless. Their possible application lies in different fields, such as fashionable and functional clothing, sportswear, medical care, packaging, interior design, sound and shock absorption, etc
    • …
    corecore