276 research outputs found

    Soundscape in Urban Forests

    Get PDF
    This Special Issue of Forests explores the role of soundscapes in urban forested areas. It is comprised of 11 papers involving soundscape studies conducted in urban forests from Asia and Africa. This collection contains six research fields: (1) the ecological patterns and processes of forest soundscapes; (2) the boundary effects and perceptual topology; (3) natural soundscapes and human health; (4) the experience of multi-sensory interactions; (5) environmental behavior and cognitive disposition; and (6) soundscape resource management in forests

    Graphonomics and your Brain on Art, Creativity and Innovation : Proceedings of the 19th International Graphonomics Conference (IGS 2019 – Your Brain on Art)

    Get PDF
    [Italiano]: “Grafonomia e cervello su arte, creatività e innovazione”. Un forum internazionale per discutere sui recenti progressi nell'interazione tra arti creative, neuroscienze, ingegneria, comunicazione, tecnologia, industria, istruzione, design, applicazioni forensi e mediche. I contributi hanno esaminato lo stato dell'arte, identificando sfide e opportunità, e hanno delineato le possibili linee di sviluppo di questo settore di ricerca. I temi affrontati includono: strategie integrate per la comprensione dei sistemi neurali, affettivi e cognitivi in ambienti realistici e complessi; individualità e differenziazione dal punto di vista neurale e comportamentale; neuroaesthetics (uso delle neuroscienze per spiegare e comprendere le esperienze estetiche a livello neurologico); creatività e innovazione; neuro-ingegneria e arte ispirata dal cervello, creatività e uso di dispositivi di mobile brain-body imaging (MoBI) indossabili; terapia basata su arte creativa; apprendimento informale; formazione; applicazioni forensi. / [English]: “Graphonomics and your brain on art, creativity and innovation”. A single track, international forum for discussion on recent advances at the intersection of the creative arts, neuroscience, engineering, media, technology, industry, education, design, forensics, and medicine. The contributions reviewed the state of the art, identified challenges and opportunities and created a roadmap for the field of graphonomics and your brain on art. The topics addressed include: integrative strategies for understanding neural, affective and cognitive systems in realistic, complex environments; neural and behavioral individuality and variation; neuroaesthetics (the use of neuroscience to explain and understand the aesthetic experiences at the neurological level); creativity and innovation; neuroengineering and brain-inspired art, creative concepts and wearable mobile brain-body imaging (MoBI) designs; creative art therapy; informal learning; education; forensics

    Surgical Subtask Automation for Intraluminal Procedures using Deep Reinforcement Learning

    Get PDF
    Intraluminal procedures have opened up a new sub-field of minimally invasive surgery that use flexible instruments to navigate through complex luminal structures of the body, resulting in reduced invasiveness and improved patient benefits. One of the major challenges in this field is the accurate and precise control of the instrument inside the human body. Robotics has emerged as a promising solution to this problem. However, to achieve successful robotic intraluminal interventions, the control of the instrument needs to be automated to a large extent. The thesis first examines the state-of-the-art in intraluminal surgical robotics and identifies the key challenges in this field, which include the need for safe and effective tool manipulation, and the ability to adapt to unexpected changes in the luminal environment. To address these challenges, the thesis proposes several levels of autonomy that enable the robotic system to perform individual subtasks autonomously, while still allowing the surgeon to retain overall control of the procedure. The approach facilitates the development of specialized algorithms such as Deep Reinforcement Learning (DRL) for subtasks like navigation and tissue manipulation to produce robust surgical gestures. Additionally, the thesis proposes a safety framework that provides formal guarantees to prevent risky actions. The presented approaches are evaluated through a series of experiments using simulation and robotic platforms. The experiments demonstrate that subtask automation can improve the accuracy and efficiency of tool positioning and tissue manipulation, while also reducing the cognitive load on the surgeon. The results of this research have the potential to improve the reliability and safety of intraluminal surgical interventions, ultimately leading to better outcomes for patients and surgeons

    How Unique do we Move? : Understanding the Human Body and Context Factors for User Identification

    Get PDF
    Past work showed great promise in biometric user identification and authentication through exploiting specific features of specific body parts. We investigate human motion across the whole body, to explore what parts of the body exhibit more unique movement patterns, and are more suitable to identify users in general. We collect and analyze full-body motion data across various activities (e.g., sitting, standing), handheld objects (uni- or bimanual), and tasks (e.g., watching TV or walking). Our analysis shows, e.g., that gait as a strong feature amplifies when carrying items, game activity elicits more unique behaviors than texting on a smartphone, and motion features are robust across body parts whereas posture features are more robust across tasks. Our work provides a holistic reference on how context affects human motion to identify us across a variety of factors, useful to inform researchers and practitioners of behavioral biometric systems on a large scale

    Designing a New Tactile Display Technology and its Disability Interactions

    Get PDF
    People with visual impairments have a strong desire for a refreshable tactile interface that can provide immediate access to full page of Braille and tactile graphics. Regrettably, existing devices come at a considerable expense and remain out of reach for many. The exorbitant costs associated with current tactile displays stem from their intricate design and the multitude of components needed for their construction. This underscores the pressing need for technological innovation that can enhance tactile displays, making them more accessible and available to individuals with visual impairments. This research thesis delves into the development of a novel tactile display technology known as Tacilia. This technology's necessity and prerequisites are informed by in-depth qualitative engagements with students who have visual impairments, alongside a systematic analysis of the prevailing architectures underpinning existing tactile display technologies. The evolution of Tacilia unfolds through iterative processes encompassing conceptualisation, prototyping, and evaluation. With Tacilia, three distinct products and interactive experiences are explored, empowering individuals to manually draw tactile graphics, generate digitally designed media through printing, and display these creations on a dynamic pin array display. This innovation underscores Tacilia's capability to streamline the creation of refreshable tactile displays, rendering them more fitting, usable, and economically viable for people with visual impairments

    Histograms: An educational eye

    Get PDF
    Many high-school students are not able to draw justified conclusions from statistical data in histograms. A literature review showed that most misinterpretations of histograms are related to difficulties with two statistical key concepts: data and distribution. The review also pointed to a lack of knowledge about students’ strategies when solving histogram tasks. As the literature provided little guidance for the design of lesson materials, several studies were conducted in preparation. In a first study, five solution strategies were found through qualitative analysis of students’ gazes when solving histograms and case-value plot tasks. Quantitative analysis of several histogram tasks through a mathematical model and a machine learning algorithm confirmed these results, which implied that these strategies could reliably and automatically be identified. Literature also suggested that dotplot tasks can support students’ learning to interpret histograms. Therefore, gazes on histogram tasks were compared before and after students solved dotplot tasks. The "after" tasks contained more gazes associated with correct strategies and fewer gazes associated with incorrect strategies. Although answers did not improve significantly, students’ verbal descriptions suggest that some students changed to a correct strategy. Newly designed materials thus started with dotplot tasks. From the previous studies, we conjectured that students lacked embodied experiences with actions related to histograms. Designed from an embodied instrumentation perspective, the tested materials provide starting points for scaling up. Together, the studies address the knowledge gaps identified in the literature. The studies contribute to knowledge about learning histograms and use in statistics education of eye-tracking research, interpretable models and machine learning algorithms, and embodied instrumentation design

    Accessibility of Health Data Representations for Older Adults: Challenges and Opportunities for Design

    Get PDF
    Health data of consumer off-the-shelf wearable devices is often conveyed to users through visual data representations and analyses. However, this is not always accessible to people with disabilities or older people due to low vision, cognitive impairments or literacy issues. Due to trade-offs between aesthetics predominance or information overload, real-time user feedback may not be conveyed easily from sensor devices through visual cues like graphs and texts. These difficulties may hinder critical data understanding. Additional auditory and tactile feedback can also provide immediate and accessible cues from these wearable devices, but it is necessary to understand existing data representation limitations initially. To avoid higher cognitive and visual overload, auditory and haptic cues can be designed to complement, replace or reinforce visual cues. In this paper, we outline the challenges in existing data representation and the necessary evidence to enhance the accessibility of health information from personal sensing devices used to monitor health parameters such as blood pressure, sleep, activity, heart rate and more. By creating innovative and inclusive user feedback, users will likely want to engage and interact with new devices and their own data

    Design and Development of LapBot: An Interactive Mobile Game for Mastering Safe Laparoscopic Cholecystectomy

    Get PDF
    Major bile duct injuries during laparoscopic cholecystectomy (LC) are a significant source of morbidity, mortality, disability, and healthcare costs. These injuries are primarily due to errors in surgical judgment and visual misperception of critical anatomy and tissue planes. To facilitate learning of safe LC we designed and developed LapBot Safe Chole, a novel mobile game integrating artificial intelligence (AI) feedback to enhance intraoperative decision-making during LC training. LapBot Safe Chole offers an engaging learning experience through short video clips of LC scenarios. Users identify optimal dissection zones, with real-time AI-generated annotations delivering accuracy scores and immediate feedback. The game comprises five progressively challenging levels aligned with the Parkland grading scale. Progression to the next level necessitates over 50% accuracy across five consecutive responses. Beta-testing (n = 22) results indicate improvement in game scores with each round, with attendings and senior trainees reaching top-scores earlier than junior residents per level. Our testing also showed that candidates can be distinguished by their learning curves and learning progression which can facilitate a competency-based curriculum. A statistically significant correlation (p=0.003) between user experience and score was observed. Furthermore, user feedback highlighted the game’s ease of use (80% agreement) and its effectiveness in making learning enjoyable (100% agreement). LapBot Safe Chole introduces and reinforces safe LC principles through an easily accessible and free gaming platform. Positive beta-testing outcomes suggest its potential adoption among surgical trainees. Future directions involve broader validation

    Contribution du cortex prémoteur à la locomotion entravée chez le chat

    Full text link
    La locomotion est une composante fondamentale de la vie animale : elle permet l’accès continu aux ressources nécessaires à la survie ainsi que l’évitement de périls variés. Les milieux naturels comme anthropiques regorgent toutefois d’obstacles s’élevant contre notre progression. Pour l’humain et les autres mammifères terrestres naviguant principalement par la vision, le franchissement efficace de ces obstacles repose critiquement sur la capacité de modifier proactivement le positionnement et la trajectoire des pas en fonction des informations visuelles extraites durant leur approche. Au niveau du système nerveux, cette capacité implique un processus complexe où le traitement des signaux visuels reflétant les paramètres de l’obstacle spécifie un cours d’action sécurisant son franchissement, lequel est ultimement exécuté par des altérations précises à l’activité musculaire. Des études approfondies chez le chat, l’un des modèles animaux les plus développés et investigués vis-à-vis du contrôle locomoteur, ont présentement impliqué deux structures corticales dans ce processus. Le cortex pariétal postérieur contribuerait ainsi à déterminer la position relative de l’obstacle et le cortex moteur primaire serait central à l’exécution des modifications de la démarche. Cependant, notre compréhension du substrat neural impliqué dans la transformation sensorimotrice joignant ces deux étapes est extrêmement limitée. Plusieurs lignes d’évidences, particulièrement dérivées de travaux chez le primate investiguant le contrôle des mouvements volontaires du bras, pointent cependant vers une contribution potentiellement majeure du cortex prémoteur à cette fonction. Cette thèse entreprend de déterminer directement la contribution prémotrice aux modifications de la démarche. Deux études rapportent ainsi l’activité de neurones individuels enregistrés dans deux larges subdivisions du cortex prémoteur, les aires 6iffu et 4delta, chez le chat éveillé accomplissant librement une tâche de négociation d’obstacles sur tapis roulant. Ces études font état de changements d’activité distincts d’une subdivision à l’autre et corrélés à des aspects spécifiques de la tâche, incluant des changements préparatoires liés à l’approche finale de l’obstacle et d’autres liés à une ou plusieurs étapes des ajustements locomoteurs séquentiels entourant sa négociation. Une troisième étude investigue par microstimulation intracorticale la capacité des différentes subdivisions prémotrices du chat à modifier la démarche. Cette étude expose une variété de réponses électromyographiques complexes s’intégrant en phase avec la marche, où plusieurs subdivisions présentent des signatures distinctes d’effets multi-membres contrastant avec l’influence focale du cortex moteur primaire. Chacune de ces trois études est finalement complémentée d’investigations par traçage rétrograde de connexions anatomiques décisives à l’interprétation fonctionnelle des subdivisions investiguées. Ensemble, ces travaux soutiennent et précisent une contribution centrale du cortex prémoteur aux modifications de la démarche sous guidage visuel. D’une part, ils rapportent pour la première fois que l’activité neuronale de multiples subdivisions du cortex prémoteur reflète différentes étapes de la planification locomotrice stipulant les altérations à entreprendre à l’approche d’un obstacle et durant son franchissement. D’autre part, ils révèlent complémentairement que l’activation de ces subdivisions a le pouvoir d’influencer profondément la marche. Les données collectées soulignent finalement plusieurs points de comparaison entre les aires prémotrices du chat et du primate, suggérant un degré d’analogie fonctionnelle extensible à la locomotion humaine.Locomotion is a fundamental component of animal life: it provides continuous access to the resources necessary for survival as well as the means to elude potential perils. However, both natural and built environments teem with obstacles impeding one’s progress. For humans and other terrestrial mammals navigating primarily through vision, efficiently negotiating these obstacles critically requires the capacity to proactively adapt the positioning and trajectory of each step on the basis of visual information extracted during their approach. In the nervous system, this capacity involves a complex process through which the integration of visual signals reflecting the parameters and location of an obstacle specifies a course of action to ensure its negotiation, Extensive studies in the cat, one of the most common models used to study the neural mechanisms involved in the control of locomotion, have currently implicated two cortical structures to this process. The posterior parietal cortex is suggested to contribute to the determination of the obstacle’s relative position (with respect to the body) while the primary motor cortex is central to the execution of the gait modifications. However, our comprehension of the neural substrate implicated in the sensorimotor transformation linking these defined stages is extremely limited. Several lines of evidence, predominantly derived from work in the primate investigating the voluntary control of arm movements, nonetheless point towards a potentially major contribution of the premotor cortex to this function. This thesis sets out to directly determine the premotor contribution to the control of gait modifications. Two studies report the activity of individual neurons recorded in two large subdivisions of premotor cortex, areas 6iffu and 4delta, in awake cats freely performing an obstacle negotiation task on treadmill. These studies describe distinct changes in activity across subdivisions that correlate with specific aspects of the task, including preparatory changes related to the final approach of the obstacle and others related to one or more stages of the sequential locomotor adjustments surrounding its negotiation. A third study used intracortical microstimulation to investigate the capacity of different premotor subdivisions of the cat to modify gait. This study reveals a variety of complex electromyographic responses that are integrated into the gait cycle. Moreover, several subdivisions show distinct signatures of multi-limb effects that contrast with the focal influence of the primary motor cortex. Each of these three studies is finally complemented by retrograde tracing investigations of anatomical connections critical to the functional interpretation of the subdivisions examined. Together, these studies support and clarify a central contribution of the premotor cortex to the modification of gait under visual guidance. We report for the first time that the neural activity of multiple subdivisions of the premotor cortex reflects different stages of the locomotor plan specifying the gait alterations to perform during the approach and crossing of an obstacle. In addition, we reveal that activation of these subdivisions has the power to profoundly influence walking. The data collected finally highlight several points of comparison between the premotor areas of the cat and the primate, suggesting a degree of functional analogy extensible to human locomotion

    Sensing within smart buildings: A survey

    Get PDF
    Increasingly, buildings are being fitted with sensors for the needs of different sectors, such as education, industry and business. Using Internet of Things (IoT) devices combined with analysis of data being generated by these devices, it is possible to infer a number of metrics, e.g. building occupancy and activities of occupants. The information thus gathered can be used to develop software applications to support energy management, occupant comfort, and space utilization. This survey explores the use of sensors in smart building environments, identifying different approaches to employ sensors in buildings. The most commonly used data-driven approaches for activity recognition in such buildings is also investigated, concluding by highlighting current research challenges and future research directions in this area
    • …
    corecore