758 research outputs found

    Modeling and Design of Longitudinal and Lateral Control System with a FeedForward Controller for a 4 Wheeled Robot

    Full text link
    The work show in this paper progresses through a sequence of physics-based increasing fidelity models that are used to design the robot controllers that respect the limits of the robot capabilities, develop a reference simple controller applicable to a large subset of tracking conditions, which include mostly non-invasive or highly dynamic movements and define path geometry following the control problem and develop both a simple geometric control and a dynamic model predictive control approach. In this paper, we propose for a nonlinear model with disturbance effect, the mathematical modeling of the longitudinal and lateral movements using PID with a feed-forward controller. This study proposes a feedforward controller to eliminate the disturbance effect

    Feasible, Robust and Reliable Automation and Control for Autonomous Systems

    Get PDF
    The Special Issue book focuses on highlighting current research and developments in the automation and control field for autonomous systems as well as showcasing state-of-the-art control strategy approaches for autonomous platforms. The book is co-edited by distinguished international control system experts currently based in Sweden, the United States of America, and the United Kingdom, with contributions from reputable researchers from China, Austria, France, the United States of America, Poland, and Hungary, among many others. The editors believe the ten articles published within this Special Issue will be highly appealing to control-systems-related researchers in applications typified in the fields of ground, aerial, maritime vehicles, and robotics as well as industrial audiences

    An Estimator for the Kinematic Behaviour of a Mobile Robot Subject to Large Lateral Slip

    Get PDF
    In this paper, the effects of wheel slip compensation in trajectory planning for mobile tractor-trailer robot applications are investigated. Firstly, a kinematic model of the proposed robot architecture is marked out, then an experimental campaign is done to identify if it is possible to kinematically compensate trajectories that otherwise would be subject to large lateral slip. Due to the close connection to the experimental data, the results shown are valid only for Epi.q, the prototype that is the main object of this manuscript. Nonetheless, the base concept can be usefully applied to any mobile robot subject to large lateral slip

    Application of a mobile robot to spatial mapping of radioactive substances in indoor environment

    Get PDF
    Nuclear medicine requires the use of radioactive substances that can contaminate critical areas (dangerous or hazardous) where the presence of a human must be reduced or avoided. The present work uses a mobile robot in real environment and 3D simulation to develop a method to realize spatial mapping of radioactive substances. The robot should visit all the waypoints arranged in a grid of connectivity that represents the environment. The work presents the methodology to perform the path planning, control and estimation of the robot location. For path planning two methods are approached, one a heuristic method based on observation of problem and another one was carried out an adaptation in the operations of the genetic algorithm. The control of the actuators was based on two methodologies, being the first to follow points and the second to follow trajectories. To locate the real mobile robot, the extended Kalman filter was used to fuse an ultra-wide band sensor with odometry, thus estimating the position and orientation of the mobile agent. The validation of the obtained results occurred using a low cost system with a laser range finder.A medicina nuclear requer o uso de substâncias radioativas que pode vir a contaminar áreas críticas, onde a presença de um ser humano deve ser reduzida ou evitada. O presente trabalho utiliza um robô móvel em ambiente real e em simulação 3D para desenvolver um método para o mapeamento espacial de substâncias radioativas. O robô deve visitar todos os waypoinst dispostos em uma grelha de conectividade que representa o ambiente. O trabalho apresenta a metodologia para realizar o planejamento de rota, controle e estimação da localização do robô. Para o planejamento de rota são abordados dois métodos, um baseado na heurística ao observar o problema e ou outro foi realizado uma adaptação nas operações do algoritmo genético. O controle dos atuadores foi baseado em duas metodologias, sendo a primeira para seguir de pontos e a segunda seguir trajetórias. Para localizar o robô móvel real foi utilizado o filtro de Kalman extendido para a fusão entre um sensor ultra-wide band e odometria, estimando assim a posição e orientação do agente móvel. A validação dos resultados obtidos ocorreu utilizando um sistema de baixo custo com um laser range finder

    Human Motion Trajectory Prediction: A Survey

    Full text link
    With growing numbers of intelligent autonomous systems in human environments, the ability of such systems to perceive, understand and anticipate human behavior becomes increasingly important. Specifically, predicting future positions of dynamic agents and planning considering such predictions are key tasks for self-driving vehicles, service robots and advanced surveillance systems. This paper provides a survey of human motion trajectory prediction. We review, analyze and structure a large selection of work from different communities and propose a taxonomy that categorizes existing methods based on the motion modeling approach and level of contextual information used. We provide an overview of the existing datasets and performance metrics. We discuss limitations of the state of the art and outline directions for further research.Comment: Submitted to the International Journal of Robotics Research (IJRR), 37 page

    An Intelligent Architecture for Legged Robot Terrain Classification Using Proprioceptive and Exteroceptive Data

    Get PDF
    In this thesis, we introduce a novel architecture called Intelligent Architecture for Legged Robot Terrain Classification Using Proprioceptive and Exteroceptive Data (iARTEC ) . The proposed architecture integrates different terrain characterization and classification with other robotic system components. Within iARTEC , we consider the problem of having a legged robot autonomously learn to identify different terrains. Robust terrain identification can be used to enhance the capabilities of legged robot systems, both in terms of locomotion and navigation. For example, a robot that has learned to differentiate sand from gravel can autonomously modify (or even select a different) path in favor of traversing over a better terrain. The same knowledge of the terrain type can also be used to guide a robot in order to avoid specific terrains. To tackle this problem, we developed four approaches for terrain characterization, classification, path planning, and control for a mobile legged robot. We developed a particle system inspired approach to estimate the robot footâ ground contact interaction forces. The approach is derived from the well known Bekkerâ s theory to estimate the contact forces based on its point contact model concepts. It is realistically model real-time 3-dimensional contact behaviors between rigid body objects and the soil. For a real-time capable implementation of this approach, its reformulated to use a lookup table generated from simple contact experiments of the robot foot with the terrain. Also, we introduced a short-range terrain classifier using the robot embodied data. The classifier is based on a supervised machine learning approach to optimize the classifier parameters and terrain it using proprioceptive sensor measurements. The learning framework preprocesses sensor data through channel reduction and filtering such that the classifier is trained on the feature vectors that are closely associated with terrain class. For the long-range terrain type prediction using the robot exteroceptive data, we present an online visual terrain classification system. It uses only a monocular camera with a feature-based terrain classification algorithm which is robust to changes in illumination and view points. For this algorithm, we extract local features of terrains using Speed Up Robust Feature (SURF). We encode the features using the Bag of Words (BoW) technique, and then classify the words using Support Vector Machines (SVMs). In addition, we described a terrain dependent navigation and path planning approach that is based on E* planer and employs a proposed metric that specifies the navigation costs associated terrain types. This generated path naturally avoids obstacles and favors terrains with lower values of the metric. At the low level, a proportional input-scaling controller is designed and implemented to autonomously steer the robot to follow the desired path in a stable manner. iARTEC performance was tested and validated experimentally using several different sensing modalities (proprioceptive and exteroceptive) and on the six legged robotic platform CREX. The results show that the proposed architecture integrating the aforementioned approaches with the robotic system allowed the robot to learn both robot-terrain interaction and remote terrain perception models, as well as the relations linking those models. This learning mechanism is performed according to the robot own embodied data. Based on the knowledge available, the approach makes use of the detected remote terrain classes to predict the most probable navigation behavior. With the assigned metric, the performance of the robot on a given terrain is predicted. This allows the navigation of the robot to be influenced by the learned models. Finally, we believe that iARTEC and the methods proposed in this thesis can likely also be implemented on other robot types (such as wheeled robots), although we did not test this option in our work

    Development of track-driven agriculture robot with terrain classification functionality / Khairul Azmi Mahadhir

    Get PDF
    Over the past years, many robots have been devised to facilitate agricultural activities (that are labor-intensive in nature) so that they can carry out tasks such as crop care or selective harvesting with minimum human supervision. It is commonly observed that rapid change in terrain conditions can jeopardize the performance and efficiency of a robot when performing agricultural activity. For instance, a terrain covered with gravel produces high vibration to robot when traversing on the surface. In this work, an agricultural robot is embedded with machine learning algorithm based on Support Vector Machine (SVM). The aim is to evaluate the effectiveness of the Support Vector Machine in recognizing different terrain conditions in an agriculture field. A test bed equipped with a tracked-driven robot and three types o f terrain i.e. sand, gravel and vegetation has been developed. A small and low power MEMS accelerometer is integrated into the robot for measuring the vertical acceleration. In this experiment, the vibration signals resulted from the interaction between the robot and the different type of terrain were collected. An extensive experimental study was conducted to evaluate the effectiveness of SVM. The results in terms of accuracy of two machine learning techniques based on terrain classification are analyzed and compared. The results show that the robot that is equipped with an SVM can recognize different terrain conditions effectively. Such capability enables the robot to traverse across changing terrain conditions without being trapped in the field. Hence, this research work contributes to develop a self-adaptive agricultural robot in coping with different terrain conditions with minimum human supervision
    • …
    corecore