773 research outputs found

    Social Control Experience Design:A Cross-Domain Investigation on Media

    Get PDF

    Workplace-Based Learning: A Study in BIM-enabled Construction Projects

    Get PDF
    Building Information Modelling (BIM) is a fast-emerging technology that has promoted digital transformation in the construction project lifecycle through changing the ways in which people work. However, empirical studies show that professionals in the construction industry are still reluctant to adopt BIM in their construction projects due to a lack of skills and suitable learning approaches. Furthermore, embracing an appropriate learning approach is still challenging in built environment projects, which are generally complex, temporary, unique and uncertain due to their fragmented nature. To achieve more successful BIM-enabled construction projects, a flexible and relevant learning approach for the workplace needs to be determined. Consequently, resolving this issue requires identification of the key learning aspects that influence creation of a suitable learning approach. The aim of this doctoral study is to explore how workplace-based learning could be designed and implemented in BIM enabled-construction projects. Learning that takes place in construction projects is predominantly determined by complex social practices. On the other hand, BIM – which professionals desire to adopt in construction projects – is interwoven with both interactions with humans and artefacts. To holistically investigate the learning in BIM-enabled construction projects, ‘Connectivism’, a new learning approach for the digital age, is adopted in this study. This explains the complex learning that happens in the work environment through a combination of principles by understanding the unrelated unseen events (chaos), exploring the learning as a collective (network), investigating the position between order and disorder (complexity) and analysing unpredictable and uncontrollable learning that occurs due to non-linear interactions (self-organising). Understanding the continuous learning in both human and non-human activities through Connectivism has helped to identify the links between the key learning aspects in the workplace. Examining the identified learning aspects in a connected way has encouraged professionals to figure out the most suitable learning approach for their project team. This study has been conducted in three phases: literature review, semi-structured interviews and a case study approach, in order to understand the learning that occurs in BIM-enabled construction projects. Semi-structured interviews were conducted with 20 professionals working in BIM-enabled construction projects. Two case studies were selected to analyse BIM-enabled construction projects in the £30-60 million scale. Furthermore, six case studies within those selected projects were chosen for an in-depth investigation on the in-project learning. Data within the case studies were collected through project documents, semi-structured interviews and meeting observations. Nvivo was used to evaluate, interpret, explain and analyse the data collected from both semi-structured interviews and case studies. The study reveals that BIM-enabled construction projects are largely involved with information that is digitally linked with federated 3D models and project participants. Investigation shows that learning in in these projects is continuous, networked and depends on participation in addition to knowledge accumulation and knowledge creation. ‘Participation’ and ‘Interpretation’ as a combination have significant impacts on this complex learning that takes place in work environments. ‘Participation’ at work shows how each individual wants to get involved, interpret and learn in each situation that they participate. On the other hand, the multidisciplinary nature of BIM-enabled construction projects confirms that project participants need to focus on interpretation to agree on a common meaning of artefacts and information. Therefore, ‘Interpretation’ is identified as a form of thinking that comprises planning, monitoring one’s activities and problem-solving. Interpretation, which is enabled via thinking and sharing experience, helps to shape the decisions and solutions during Participation. To help construction projects in achieving a suitable learning approach which is vital for a success of a project, a model for learning in the workplace has been developed through merging the learning aspects that have been identified from chosen BIM-enabled construction projects. The novel model for workplace-based learning is a combination of participation and interpretation which is linked through three learning modes: Alignment, Insight and Engagement. The combination of these learning modes has contributed to interpret the ideas while participating at work. Consequently, it enabled project participants to align on a common meaning in an informative collaborative environment. The proposed model of learning in the workplace presents a systematic approach for achieving suitable learning in BIM-enabled projects by connecting the key learning aspects at the project level. Furthermore, this can be also used to employ skilled people and promote common standards on skills expectations associated with BIM-enabled projects

    Designing hybridization: alternative education strategies for fostering innovation in communication design for the territory

    Get PDF
    Within the broad context of design studies, Communication Design for the Territory stands as a hybrid discipline constantly interfacing with other fields of knowledge. It assumes the territorial theme as its specific dimension, aiming to generate communication systems capable of reading the stratifications of places. From an educational perspective, teaching activities are closely linked to research and can take on different levels of complexity: from the various forms of cartographic translation to the design of sophisticated transmedia digital systems. In the wake of COVID-19, this discipline has come to terms with a profoundly changed scenario in terms of limited access to the physical space and the emergence of new technologies for remote access. In this unique context, we propose a pedagogical strategy that focuses on the hybridization of communication artifacts with the aim of fostering design experimentation. As a creative tool, hybridization leads to the design of innovative systems by strategically combining the characteristics of different artifacts to achieve specific communication goals. By experimenting with these creative strategies, students are led to critically reflect on existing communication artifacts’ features and explore original designs that deliberately combine different media, contents, and communication languages in innovative ways. Through hybridization, the methods for territorial knowledge production appear more effective, effectively combining the skills and knowledge embodied in multiple subject areas. The paper presents the experience developed in the teaching laboratories of the DCxT (Communication Design for the Territory) research group of the Design Department of Politecnico di Milano. The teaching experience highlights how hybridization strategies can increase the effectiveness in learning about territorial specificities, in acquiring critical knowledge about communication systems, and in developing innovation strategies that allow to influence the evolution of traditional communication models

    Sensing the Cultural Significance with AI for Social Inclusion

    Get PDF
    Social Inclusion has been growing as a goal in heritage management. Whereas the 2011 UNESCO Recommendation on the Historic Urban Landscape (HUL) called for tools of knowledge documentation, social media already functions as a platform for online communities to actively involve themselves in heritage-related discussions. Such discussions happen both in “baseline scenarios” when people calmly share their experiences about the cities they live in or travel to, and in “activated scenarios” when radical events trigger their emotions. To organize, process, and analyse the massive unstructured multi-modal (mainly images and texts) user-generated data from social media efficiently and systematically, Artificial Intelligence (AI) is shown to be indispensable. This thesis explores the use of AI in a methodological framework to include the contribution of a larger and more diverse group of participants with user-generated data. It is an interdisciplinary study integrating methods and knowledge from heritage studies, computer science, social sciences, network science, and spatial analysis. AI models were applied, nurtured, and tested, helping to analyse the massive information content to derive the knowledge of cultural significance perceived by online communities. The framework was tested in case study cities including Venice, Paris, Suzhou, Amsterdam, and Rome for the baseline and/or activated scenarios. The AI-based methodological framework proposed in this thesis is shown to be able to collect information in cities and map the knowledge of the communities about cultural significance, fulfilling the expectation and requirement of HUL, useful and informative for future socially inclusive heritage management processes

    Social Control Experience Design:A Cross-Domain Investigation on Media

    Get PDF

    Valorization of Food Processing By-Products

    Get PDF
    The papers published in this Special Issue report on recent studies investigating the exploitation of by-products produced by the food industry. The topics investigated include the extraction setups used for valuable food waste by-products and their applications as adjuncts to food preparation; the appropriate selection of solvents and extraction processes; and the interactions between extracted fractions and supplementary foods. The papers evaluate a wide variety of foodstuffs and provide results regarding the extension their shelf-lives and activities as functional foods
    • 

    corecore