8,552 research outputs found

    Modeling of wide-band MIMO radio channels based on NLoS indoor measurements

    Get PDF
    Link to published version (if available)

    Delay Constrained Throughput Analysis of a Correlated MIMO Wireless Channel

    Full text link
    The maximum traffic arrival rate at the network for a given delay guarantee (delay constrained throughput) has been well studied for wired channels. However, few results are available for wireless channels, especially when multiple antennas are employed at the transmitter and receiver. In this work, we analyze the network delay constrained throughput of a multiple input multiple output (MIMO) wireless channel with time-varying spatial correlation. The MIMO channel is modeled via its virtual representation, where the individual spatial paths between the antenna pairs are Gilbert-Elliot channels. The whole system is then described by a K-State Markov chain, where K depends upon the degree of freedom (DOF) of the channel. We prove that the DOF based modeling is indeed accurate. Furthermore, we study the impact of the delay requirements at the network layer, violation probability and the number of antennas on the throughput under different fading speeds and signal strength.Comment: Submitted to ICCCN 2011, 8 pages, 5 figure

    On the Impact of Hardware Impairments on Massive MIMO

    Get PDF
    Massive multi-user (MU) multiple-input multiple-output (MIMO) systems are one possible key technology for next generation wireless communication systems. Claims have been made that massive MU-MIMO will increase both the radiated energy efficiency as well as the sum-rate capacity by orders of magnitude, because of the high transmit directivity. However, due to the very large number of transceivers needed at each base-station (BS), a successful implementation of massive MU-MIMO will be contingent on of the availability of very cheap, compact and power-efficient radio and digital-processing hardware. This may in turn impair the quality of the modulated radio frequency (RF) signal due to an increased amount of power-amplifier distortion, phase-noise, and quantization noise. In this paper, we examine the effects of hardware impairments on a massive MU-MIMO single-cell system by means of theory and simulation. The simulations are performed using simplified, well-established statistical hardware impairment models as well as more sophisticated and realistic models based upon measurements and electromagnetic antenna array simulations.Comment: 7 pages, 9 figures, Accepted for presentation at Globe-Com workshop on Massive MIM

    Impact of Spatial Filtering on Distortion from Low-Noise Amplifiers in Massive MIMO Base Stations

    Full text link
    In massive MIMO base stations, power consumption and cost of the low-noise amplifiers (LNAs) can be substantial because of the many antennas. We investigate the feasibility of inexpensive, power efficient LNAs, which inherently are less linear. A polynomial model is used to characterize the nonlinear LNAs and to derive the second-order statistics and spatial correlation of the distortion. We show that, with spatial matched filtering (maximum-ratio combining) at the receiver, some distortion terms combine coherently, and that the SINR of the symbol estimates therefore is limited by the linearity of the LNAs. Furthermore, it is studied how the power from a blocker in the adjacent frequency band leaks into the main band and creates distortion. The distortion term that scales cubically with the power received from the blocker has a spatial correlation that can be filtered out by spatial processing and only the coherent term that scales quadratically with the power remains. When the blocker is in free-space line-of-sight and the LNAs are identical, this quadratic term has the same spatial direction as the desired signal, and hence cannot be removed by linear receiver processing
    • …
    corecore