22,750 research outputs found

    AI and OR in management of operations: history and trends

    Get PDF
    The last decade has seen a considerable growth in the use of Artificial Intelligence (AI) for operations management with the aim of finding solutions to problems that are increasing in complexity and scale. This paper begins by setting the context for the survey through a historical perspective of OR and AI. An extensive survey of applications of AI techniques for operations management, covering a total of over 1200 papers published from 1995 to 2004 is then presented. The survey utilizes Elsevier's ScienceDirect database as a source. Hence, the survey may not cover all the relevant journals but includes a sufficiently wide range of publications to make it representative of the research in the field. The papers are categorized into four areas of operations management: (a) design, (b) scheduling, (c) process planning and control and (d) quality, maintenance and fault diagnosis. Each of the four areas is categorized in terms of the AI techniques used: genetic algorithms, case-based reasoning, knowledge-based systems, fuzzy logic and hybrid techniques. The trends over the last decade are identified, discussed with respect to expected trends and directions for future work suggested

    A Hybrid Method for Modeling and Solving Supply Chain Optimization Problems with Soft and Logical Constraints

    Get PDF
    This paper presents a hybrid method for modeling and solving supply chain optimization problems with soft, hard, and logical constraints. Ability to implement soft and logical constraints is a very important functionality for supply chain optimization models. Such constraints are particularly useful for modeling problems resulting from commercial agreements, contracts, competition, technology, safety, and environmental conditions. Two programming and solving environments, mathematical programming (MP) and constraint logic programming (CLP), were combined in the hybrid method. This integration, hybridization, and the adequate multidimensional transformation of the problem (as a presolving method) helped to substantially reduce the search space of combinatorial models for supply chain optimization problems. The operation research MP and declarative CLP, where constraints are modeled in different ways and different solving procedures are implemented, were linked together to use the strengths of both. This approach is particularly important for the decision and combinatorial optimization models with the objective function and constraints, there are many decision variables, and these are summed (common in manufacturing, supply chain management, project management, and logistic problems). The ECLiPSe system with Eplex library was proposed to implement a hybrid method. Additionally, the proposed hybrid transformed model is compared with the MILP-Mixed Integer Linear Programming model on the same data instances. For illustrative models, its use allowed finding optimal solutions eight to one hundred times faster and reducing the size of the combinatorial problem to a significant extent

    The relevance of outsourcing and leagile strategies in performance optimization of an integrated process planning and scheduling

    Get PDF
    Over the past few years growing global competition has forced the manufacturing industries to upgrade their old production strategies with the modern day approaches. As a result, recent interest has been developed towards finding an appropriate policy that could enable them to compete with others, and facilitate them to emerge as a market winner. Keeping in mind the abovementioned facts, in this paper the authors have proposed an integrated process planning and scheduling model inheriting the salient features of outsourcing, and leagile principles to compete in the existing market scenario. The paper also proposes a model based on leagile principles, where the integrated planning management has been practiced. In the present work a scheduling problem has been considered and overall minimization of makespan has been aimed. The paper shows the relevance of both the strategies in performance enhancement of the industries, in terms of their reduced makespan. The authors have also proposed a new hybrid Enhanced Swift Converging Simulated Annealing (ESCSA) algorithm, to solve the complex real-time scheduling problems. The proposed algorithm inherits the prominent features of the Genetic Algorithm (GA), Simulated Annealing (SA), and the Fuzzy Logic Controller (FLC). The ESCSA algorithm reduces the makespan significantly in less computational time and number of iterations. The efficacy of the proposed algorithm has been shown by comparing the results with GA, SA, Tabu, and hybrid Tabu-SA optimization methods

    On the use of biased-randomized algorithms for solving non-smooth optimization problems

    Get PDF
    Soft constraints are quite common in real-life applications. For example, in freight transportation, the fleet size can be enlarged by outsourcing part of the distribution service and some deliveries to customers can be postponed as well; in inventory management, it is possible to consider stock-outs generated by unexpected demands; and in manufacturing processes and project management, it is frequent that some deadlines cannot be met due to delays in critical steps of the supply chain. However, capacity-, size-, and time-related limitations are included in many optimization problems as hard constraints, while it would be usually more realistic to consider them as soft ones, i.e., they can be violated to some extent by incurring a penalty cost. Most of the times, this penalty cost will be nonlinear and even noncontinuous, which might transform the objective function into a non-smooth one. Despite its many practical applications, non-smooth optimization problems are quite challenging, especially when the underlying optimization problem is NP-hard in nature. In this paper, we propose the use of biased-randomized algorithms as an effective methodology to cope with NP-hard and non-smooth optimization problems in many practical applications. Biased-randomized algorithms extend constructive heuristics by introducing a nonuniform randomization pattern into them. Hence, they can be used to explore promising areas of the solution space without the limitations of gradient-based approaches, which assume the existence of smooth objective functions. Moreover, biased-randomized algorithms can be easily parallelized, thus employing short computing times while exploring a large number of promising regions. This paper discusses these concepts in detail, reviews existing work in different application areas, and highlights current trends and open research lines

    Motion Planning of Uncertain Ordinary Differential Equation Systems

    Get PDF
    This work presents a novel motion planning framework, rooted in nonlinear programming theory, that treats uncertain fully and under-actuated dynamical systems described by ordinary differential equations. Uncertainty in multibody dynamical systems comes from various sources, such as: system parameters, initial conditions, sensor and actuator noise, and external forcing. Treatment of uncertainty in design is of paramount practical importance because all real-life systems are affected by it, and poor robustness and suboptimal performance result if it’s not accounted for in a given design. In this work uncertainties are modeled using Generalized Polynomial Chaos and are solved quantitatively using a least-square collocation method. The computational efficiency of this approach enables the inclusion of uncertainty statistics in the nonlinear programming optimization process. As such, the proposed framework allows the user to pose, and answer, new design questions related to uncertain dynamical systems. Specifically, the new framework is explained in the context of forward, inverse, and hybrid dynamics formulations. The forward dynamics formulation, applicable to both fully and under-actuated systems, prescribes deterministic actuator inputs which yield uncertain state trajectories. The inverse dynamics formulation is the dual to the forward dynamic, and is only applicable to fully-actuated systems; deterministic state trajectories are prescribed and yield uncertain actuator inputs. The inverse dynamics formulation is more computationally efficient as it requires only algebraic evaluations and completely avoids numerical integration. Finally, the hybrid dynamics formulation is applicable to under-actuated systems where it leverages the benefits of inverse dynamics for actuated joints and forward dynamics for unactuated joints; it prescribes actuated state and unactuated input trajectories which yield uncertain unactuated states and actuated inputs. The benefits of the ability to quantify uncertainty when planning the motion of multibody dynamic systems are illustrated through several case-studies. The resulting designs determine optimal motion plans—subject to deterministic and statistical constraints—for all possible systems within the probability space

    Bütünleşik tedarik zinciri çizelgeleme modelleri: Bir literatür taraması

    Get PDF
    Research on integration of supply chain and scheduling is relatively recent, and number of studies on this topic is increasing. This study provides a comprehensive literature survey about Integrated Supply Chain Scheduling (ISCS) models to help identify deficiencies in this area. For this purpose, it is thought that this study will contribute in terms of guiding researchers working in this field. In this study, existing literature on ISCS problems are reviewed and summarized by introducing the new classification scheme. The studies were categorized by considering the features such as the number of customers (single or multiple), product lifespan (limited or unlimited), order sizes (equal or general), vehicle characteristics (limited/sufficient and homogeneous/heterogeneous), machine configurations and number of objective function (single or multi objective). In addition, properties of mathematical models applied for problems and solution approaches are also discussed.Bütünleşik Tedarik Zinciri Çizelgeleme (BTZÇ) üzerine yapılan araştırmalar nispeten yenidir ve bu konu üzerine yapılan çalışma sayısı artmaktadır. Bu çalışma, bu alandaki eksiklikleri tespit etmeye yardımcı olmak için BTZÇ modelleri hakkında kapsamlı bir literatür araştırması sunmaktadır. Bu amaçla, bu çalışmanın bu alanda çalışan araştırmacılara rehberlik etmesi açısından katkı sağlayacağı düşünülmektedir. Bu çalışmada, BTZÇ problemleri üzerine mevcut literatür gözden geçirilmiş ve yeni sınıflandırma şeması tanıtılarak çalışmalar özetlenmiştir. Çalışmalar; tek veya çoklu müşteri sayısı, sipariş büyüklüğü tipi (eşit veya genel), ürün ömrü (sınırlı veya sınırsız), araç karakteristikleri (sınırlı/yeterli ve homojen/heterojen), makine konfigürasyonları ve amaç fonksiyonu sayısı (tek veya çok amaçlı) gibi özellikler dikkate alınarak kategorize edildi. Ayrıca problemler için uygulanan matematiksel modellerin özellikleri ve çözüm yaklaşımları da tartışılmıştır

    Combining Spot and Futures Markets: A Hybrid Market Approach to Dynamic Spectrum Access

    Full text link
    Dynamic spectrum access is a new paradigm of secondary spectrum utilization and sharing. It allows unlicensed secondary users (SUs) to exploit opportunistically the under-utilized licensed spectrum. Market mechanism is a widely-used promising means to regulate the consuming behaviours of users and, hence, achieves the efficient allocation and consumption of limited resources. In this paper, we propose and study a hybrid secondary spectrum market consisting of both the futures market and the spot market, in which SUs (buyers) purchase under-utilized licensed spectrum from a spectrum regulator, either through predefined contracts via the futures market, or through spot transactions via the spot market. We focus on the optimal spectrum allocation among SUs in an exogenous hybrid market that maximizes the secondary spectrum utilization efficiency. The problem is challenging due to the stochasticity and asymmetry of network information. To solve this problem, we first derive an off-line optimal allocation policy that maximizes the ex-ante expected spectrum utilization efficiency based on the stochastic distribution of network information. We then propose an on-line VickreyCClarkeCGroves (VCG) auction that determines the real-time allocation and pricing of every spectrum based on the realized network information and the pre-derived off-line policy. We further show that with the spatial frequency reuse, the proposed VCG auction is NP-hard; hence, it is not suitable for on-line implementation, especially in a large-scale market. To this end, we propose a heuristics approach based on an on-line VCG-like mechanism with polynomial-time complexity, and further characterize the corresponding performance loss bound analytically. We finally provide extensive numerical results to evaluate the performance of the proposed solutions.Comment: This manuscript is the complete technical report for the journal version published in INFORMS Operations Researc

    A TSSA algorithm based approach to enhance the performance of warehouse system

    Get PDF
    In this plethora of increased competitiveness and globalization the effective management of the warehouse system is a challenging task. Realizing that proper scheduling of the warehouses is necessary to outperform the competitors on cost, lead time, and customer service basis (Koster, 1998); the proposed research focuses on optimization of warehouse scheduling problems. This research aims to minimize the total tardiness so that the overall time involved in managing the inventory inside the warehouse could be effectively reduced. This research also deals with the vehicle routing issues in the warehousing scenario and considers various constraints, and decision variables, directly influencing the undertaken objective so as to make the model more realistic to the real world environment. The authors have also proposed a hybrid tabu sample-sort simulated annealing (TSSA) algorithm to reduce the tardiness as well as to enhance the performance of the warehousing system. The proposed TSSA algorithm inherits the merits of the tabu search and sample-sort annealing algorithm. The comparative analysis of the results of the TSSA algorithm with other algorithms such as simulated annealing (SA), tabu search (TS), and hybrid tabu search algorithms indicates its superiority over others, both in terms of computational time as well as total tardiness reduction
    corecore