2,574 research outputs found

    Performance Analysis of a System with Bursty Traffic and Adjustable Transmission Times

    Full text link
    In this work, we consider the case where a source with bursty traffic can adjust the transmission duration in order to increase the reliability. The source is equipped with a queue in order to store the arriving packets. We model the system with a discrete time Markov Chain, and we characterize the performance in terms of service probability and average delay per packet. The accuracy of the theoretical results is validated through simulations. This work serves as an initial step in order to provide a framework for systems with arbitrary arrivals and variable transmission durations and it can be utilized for the derivation of the delay distribution and the delay violation probability.Comment: ISWCS 201

    Differentiated Predictive Fair Service for TCP Flows

    Full text link
    The majority of the traffic (bytes) flowing over the Internet today have been attributed to the Transmission Control Protocol (TCP). This strong presence of TCP has recently spurred further investigations into its congestion avoidance mechanism and its effect on the performance of short and long data transfers. At the same time, the rising interest in enhancing Internet services while keeping the implementation cost low has led to several service-differentiation proposals. In such service-differentiation architectures, much of the complexity is placed only in access routers, which classify and mark packets from different flows. Core routers can then allocate enough resources to each class of packets so as to satisfy delivery requirements, such as predictable (consistent) and fair service. In this paper, we investigate the interaction among short and long TCP flows, and how TCP service can be improved by employing a low-cost service-differentiation scheme. Through control-theoretic arguments and extensive simulations, we show the utility of isolating TCP flows into two classes based on their lifetime/size, namely one class of short flows and another of long flows. With such class-based isolation, short and long TCP flows have separate service queues at routers. This protects each class of flows from the other as they possess different characteristics, such as burstiness of arrivals/departures and congestion/sending window dynamics. We show the benefits of isolation, in terms of better predictability and fairness, over traditional shared queueing systems with both tail-drop and Random-Early-Drop (RED) packet dropping policies. The proposed class-based isolation of TCP flows has several advantages: (1) the implementation cost is low since it only requires core routers to maintain per-class (rather than per-flow) state; (2) it promises to be an effective traffic engineering tool for improved predictability and fairness for both short and long TCP flows; and (3) stringent delay requirements of short interactive transfers can be met by increasing the amount of resources allocated to the class of short flows.National Science Foundation (CAREER ANI-0096045, MRI EIA-9871022

    X-TCP: A Cross Layer Approach for TCP Uplink Flows in mmWave Networks

    Full text link
    Millimeter wave frequencies will likely be part of the fifth generation of mobile networks and of the 3GPP New Radio (NR) standard. MmWave communication indeed provides a very large bandwidth, thus an increased cell throughput, but how to exploit these resources at the higher layers is still an open research question. A very relevant issue is the high variability of the channel, caused by the blockage from obstacles and the human body. This affects the design of congestion control mechanisms at the transport layer, and state-of-the-art TCP schemes such as TCP CUBIC present suboptimal performance. In this paper, we present a cross layer approach for uplink flows that adjusts the congestion window of TCP at the mobile equipment side using an estimation of the available data rate at the mmWave physical layer, based on the actual resource allocation and on the Signal to Interference plus Noise Ratio. We show that this approach reduces the latency, avoiding to fill the buffers in the cellular stack, and has a quicker recovery time after RTO events than several other TCP congestion control algorithms.Comment: 6 pages, 5 figures, accepted for presentation at the 2017 16th Annual Mediterranean Ad Hoc Networking Workshop (MED-HOC-NET

    A queueing theory description of fat-tailed price returns in imperfect financial markets

    Full text link
    In a financial market, for agents with long investment horizons or at times of severe market stress, it is often changes in the asset price that act as the trigger for transactions or shifts in investment position. This suggests the use of price thresholds to simulate agent behavior over much longer timescales than are currently used in models of order-books. We show that many phenomena, routinely ignored in efficient market theory, can be systematically introduced into an otherwise efficient market, resulting in models that robustly replicate the most important stylized facts. We then demonstrate a close link between such threshold models and queueing theory, with large price changes corresponding to the busy periods of a single-server queue. The distribution of the busy periods is known to have excess kurtosis and non-exponential decay under various assumptions on the queue parameters. Such an approach may prove useful in the development of mathematical models for rapid deleveraging and panics in financial markets, and the stress-testing of financial institutions

    Modeling a healthcare system as a queueing network:The case of a Belgian hospital.

    Get PDF
    The performance of health care systems in terms of patient flow times and utilization of critical resources can be assessed through queueing and simulation models. We model the orthopaedic department of the Middelheim hospital (Antwerpen, Belgium) focusing on the impact of outages (preemptive and nonpreemptive outages) on the effective utilization of resources and on the flowtime of patients. Several queueing network solution procedures are developed such as the decomposition and Brownian motion approaches. Simulation is used as a validation tool. We present new approaches to model outages. The model offers a valuable tool to study the trade-off between the capacity structure, sources of variability and patient flow times.Belgium; Brownian motion; Capacity management; Decomposition; Health care; Healthcare; Impact; Model; Models; Performance; Performance measurement; Queueing; Queueing theory; Simulation; Stochastic processes; Structure; Studies; Systems; Time; Tool; Validation; Variability;
    • …
    corecore