3,493 research outputs found

    Modeling rationality to control self-organization of crowds: An environmental approach

    Full text link
    In this paper we propose a classification of crowd models in built environments based on the assumed pedestrian ability to foresee the movements of other walkers. At the same time, we introduce a new family of macroscopic models, which make it possible to tune the degree of predictiveness (i.e., rationality) of the individuals. By means of these models we describe both the natural behavior of pedestrians, i.e., their expected behavior according to their real limited predictive ability, and a target behavior, i.e., a particularly efficient behavior one would like them to assume (for, e.g., logistic or safety reasons). Then we tackle a challenging shape optimization problem, which consists in controlling the environment in such a way that the natural behavior is as close as possible to the target one, thereby inducing pedestrians to behave more rationally than what they would naturally do. We present numerical tests which elucidate the role of rational/predictive abilities and show some promising results about the shape optimization problem

    How simple rules determine pedestrian behavior and crowd disasters

    Full text link
    With the increasing size and frequency of mass events, the study of crowd disasters and the simulation of pedestrian flows have become important research areas. Yet, even successful modeling approaches such as those inspired by Newtonian force models are still not fully consistent with empirical observations and are sometimes hard to calibrate. Here, a novel cognitive science approach is proposed, which is based on behavioral heuristics. We suggest that, guided by visual information, namely the distance of obstructions in candidate lines of sight, pedestrians apply two simple cognitive procedures to adapt their walking speeds and directions. While simpler than previous approaches, this model predicts individual trajectories and collective patterns of motion in good quantitative agreement with a large variety of empirical and experimental data. This includes the emergence of self-organization phenomena, such as the spontaneous formation of unidirectional lanes or stop-and-go waves. Moreover, the combination of pedestrian heuristics with body collisions generates crowd turbulence at extreme densities-a phenomenon that has been observed during recent crowd disasters. By proposing an integrated treatment of simultaneous interactions between multiple individuals, our approach overcomes limitations of current physics-inspired pair interaction models. Understanding crowd dynamics through cognitive heuristics is therefore not only crucial for a better preparation of safe mass events. It also clears the way for a more realistic modeling of collective social behaviors, in particular of human crowds and biological swarms. Furthermore, our behavioral heuristics may serve to improve the navigation of autonomous robots.Comment: Article accepted for publication in PNA

    Toward a Mathematical Theory of Behavioral-Social Dynamics for Pedestrian Crowds

    Full text link
    This paper presents a new approach to behavioral-social dynamics of pedestrian crowds by suitable development of methods of the kinetic theory. It is shown how heterogeneous individual behaviors can modify the collective dynamics, as well as how local unusual behaviors can propagate in the crowd. The main feature of this approach is a detailed analysis of the interactions between dynamics and social behaviors.Comment: 22 pages, 5 figure

    The Effect of Integrating Travel Time

    Full text link
    This contribution demonstrates the potential gain for the quality of results in a simulation of pedestrians when estimated remaining travel time is considered as a determining factor for the movement of simulated pedestrians. This is done twice: once for a force-based model and once for a cellular automata-based model. The results show that for the (degree of realism of) simulation results it is more relevant if estimated remaining travel time is considered or not than which modeling technique is chosen -- here force-based vs. cellular automata -- which normally is considered to be the most basic choice of modeling approach.Comment: preprint of Pedestrian and Evacuation 2012 conference (PED2012) contributio

    Pedestrian flows in bounded domains with obstacles

    Full text link
    In this paper we systematically apply the mathematical structures by time-evolving measures developed in a previous work to the macroscopic modeling of pedestrian flows. We propose a discrete-time Eulerian model, in which the space occupancy by pedestrians is described via a sequence of Radon positive measures generated by a push-forward recursive relation. We assume that two fundamental aspects of pedestrian behavior rule the dynamics of the system: On the one hand, the will to reach specific targets, which determines the main direction of motion of the walkers; on the other hand, the tendency to avoid crowding, which introduces interactions among the individuals. The resulting model is able to reproduce several experimental evidences of pedestrian flows pointed out in the specialized literature, being at the same time much easier to handle, from both the analytical and the numerical point of view, than other models relying on nonlinear hyperbolic conservation laws. This makes it suitable to address two-dimensional applications of practical interest, chiefly the motion of pedestrians in complex domains scattered with obstacles.Comment: 25 pages, 9 figure

    Overview of crowd simulation in computer graphics

    Get PDF
    High-powered technology use computer graphics in education, entertainment, games, simulation, and virtual heritage applications has led it to become an important area of research. In simulation, according to Tecchia et al. (2002), it is important to create an interactive, complex, and realistic virtual world so that the user can have an immersive experience during navigation through the world. As the size and complexity of the environments in the virtual world increased, it becomes more necessary to populate them with peoples, and this is the reason why rendering the crowd in real-time is very crucial. Generally, crowd simulation consists of three important areas. They are realism of behavioral (Thompson and Marchant 1995), high-quality visualization (Dobbyn et al. 2005) and convergence of both areas. Realism of behavioral is mainly used for simple 2D visualizations because most of the attentions are concentrated on simulating the behaviors of the group. High quality visualization is regularly used for movie productions and computer games. It gives intention on producing more convincing visual rather than realism of behaviors. The convergences of both areas are mainly used for application like training systems. In order to make the training system more effective, the element of valid replication of the behaviors and high-quality visualization is added

    Placing large group relations into pedestrian dynamics: psychological crowds in counterflow

    Get PDF
    Understanding influences on pedestrian movement is important to accurately simulate crowd behaviour, yet little research has explored the psychological factors that influence interactions between large groups in counterflow scenarios. Research from social psychology has demonstrated that social identities can influence the micro-level pedestrian movement of a psychological crowd, yet this has not been extended to explore behaviour when two large psychological groups are co-present. This study investigates how the presence of large groups with different social identities can affect pedestrian behaviour when walking in counterflow. Participants (N = 54) were divided into two groups and primed to have identities as either ‘team A’ or ‘team B’. The trajectories of all participants were tracked to compare the movement of team A when walking alone to when walking in counterflow with team B, based on their i) speed of movement and distance walked, and ii) proximity between participants. In comparison to walking alone, the presence of another group influenced team A to collectively self-organise to reduce their speed and distance walked in order to walk closely together with ingroup members. We discuss the importance of incorporating social identities into pedestrian group dynamics for empirically validated simulations of counterflow scenarios
    corecore