837 research outputs found

    Motion Estimation and Compensation in Automotive MIMO SAR

    Get PDF
    With the advent of self-driving vehicles, autonomous driving systems will have to rely on a vast number of heterogeneous sensors to perform dynamic perception of the surrounding environment. Synthetic Aperture Radar (SAR) systems increase the resolution of conventional mass-market radars by exploiting the vehicle's ego-motion, requiring a very accurate knowledge of the trajectory, usually not compatible with automotive-grade navigation systems. In this regard, this paper deals with the analysis, estimation and compensation of trajectory estimation errors in automotive SAR systems, proposing a complete residual motion estimation and compensation workflow. We start by defining the geometry of the acquisition and the basic processing steps of Multiple-Input Multiple-Output (MIMO) SAR systems. Then, we analytically derive the effects of typical motion errors in automotive SAR imaging. Based on the derived models, the procedure is detailed, outlining the guidelines for its practical implementation. We show the effectiveness of the proposed technique by means of experimental data gathered by a 77 GHz radar mounted in a forward looking configuration.Comment: 14 page

    The glaciers climate change initiative: Methods for creating glacier area, elevation change and velocity products

    Get PDF
    Glaciers and their changes through time are increasingly obtained from a wide range of satellite sensors. Due to the often remote location of glaciers in inaccessible and high-mountain terrain, satellite observations frequently provide the only available measurements. Furthermore, satellite data provide observations of glacier character- istics that are difficult to monitor using ground-based measurements, thus complementing the latter. In the Glaciers_cci project of the European Space Agency (ESA), three of these characteristics are investigated in detail: glacier area, elevation change and surface velocity. We use (a) data from optical sensors to derive glacier outlines, (b) digital elevation models from at least two points in time, (c) repeat altimetry for determining elevation changes, and (d) data from repeat optical and microwave sensors for calculating surface velocity. For the latter, the two sensor types provide complementary information in terms of spatio-temporal coverage. While (c) and (d) can be generated mostly automatically, (a) and (b) require the intervention of an analyst. Largely based on the results of various round robin experiments (multi-analyst benchmark studies) for each of the products, we suggest and describe the most suitable algorithms for product creation and provide recommendations concerning their practical implementation and the required post-processing. For some of the products (area, velocity) post-processing can influence product quality more than the main-processing algorithm

    Radar Imaging in Challenging Scenarios from Smart and Flexible Platforms

    Get PDF
    undefine

    UAVSAR: A new NASA airborne SAR system for science and technology research

    Get PDF
    NASA’s Jet Propulsion Laboratory is currently building a reconfigurable, polarimetric L-band synthetic aperture radar (SAR), specifically designed to acquire airborne repeat track SAR data for differential interferometric measurements. Differential interferometry can provide key deformation measurements, important for studies of earthquakes, volcanoes and other dynamically changing phenomena. Using precision real-time GPS and a sensor controlled flight management system, the system will be able to fly predefined paths with great precision. The expected performance of the flight control system will constrain the flight path to be within a 10 m diameter tube about the desired flight track. The radar will be designed to be operable on a UAV (Unpiloted Arial Vehicle) but will initially be demonstrated on a on a NASA Gulfstream III. The radar will be fully polarimetric, with a range bandwidth of 80 MHz (2 m range resolution), and will support a 16 km range swath. The antenna will be electronically steered along track to assure that the antenna beam can be directed independently, regardless of the wind direction and speed. Other features supported by the antenna include elevation monopulse and pulse-to-pulse re-steering capabilities that will enable some novel modes of operation. The system will nominally operate at 45,000 ft (13800 m). The program began as an Instrument Incubator Project (IIP) funded by NASA Earth Science and Technology Office (ESTO)

    Elevation and Deformation Extraction from TomoSAR

    Get PDF
    3D SAR tomography (TomoSAR) and 4D SAR differential tomography (Diff-TomoSAR) exploit multi-baseline SAR data stacks to provide an essential innovation of SAR Interferometry for many applications, sensing complex scenes with multiple scatterers mapped into the same SAR pixel cell. However, these are still influenced by DEM uncertainty, temporal decorrelation, orbital, tropospheric and ionospheric phase distortion and height blurring. In this thesis, these techniques are explored. As part of this exploration, the systematic procedures for DEM generation, DEM quality assessment, DEM quality improvement and DEM applications are first studied. Besides, this thesis focuses on the whole cycle of systematic methods for 3D & 4D TomoSAR imaging for height and deformation retrieval, from the problem formation phase, through the development of methods to testing on real SAR data. After DEM generation introduction from spaceborne bistatic InSAR (TanDEM-X) and airborne photogrammetry (Bluesky), a new DEM co-registration method with line feature validation (river network line, ridgeline, valley line, crater boundary feature and so on) is developed and demonstrated to assist the study of a wide area DEM data quality. This DEM co-registration method aligns two DEMs irrespective of the linear distortion model, which improves the quality of DEM vertical comparison accuracy significantly and is suitable and helpful for DEM quality assessment. A systematic TomoSAR algorithm and method have been established, tested, analysed and demonstrated for various applications (urban buildings, bridges, dams) to achieve better 3D & 4D tomographic SAR imaging results. These include applying Cosmo-Skymed X band single-polarisation data over the Zipingpu dam, Dujiangyan, Sichuan, China, to map topography; and using ALOS L band data in the San Francisco Bay region to map urban building and bridge. A new ionospheric correction method based on the tile method employing IGS TEC data, a split-spectrum and an ionospheric model via least squares are developed to correct ionospheric distortion to improve the accuracy of 3D & 4D tomographic SAR imaging. Meanwhile, a pixel by pixel orbit baseline estimation method is developed to address the research gaps of baseline estimation for 3D & 4D spaceborne SAR tomography imaging. Moreover, a SAR tomography imaging algorithm and a differential tomography four-dimensional SAR imaging algorithm based on compressive sensing, SAR interferometry phase (InSAR) calibration reference to DEM with DEM error correction, a new phase error calibration and compensation algorithm, based on PS, SVD, PGA, weighted least squares and minimum entropy, are developed to obtain accurate 3D & 4D tomographic SAR imaging results. The new baseline estimation method and consequent TomoSAR processing results showed that an accurate baseline estimation is essential to build up the TomoSAR model. After baseline estimation, phase calibration experiments (via FFT and Capon method) indicate that a phase calibration step is indispensable for TomoSAR imaging, which eventually influences the inversion results. A super-resolution reconstruction CS based study demonstrates X band data with the CS method does not fit for forest reconstruction but works for reconstruction of large civil engineering structures such as dams and urban buildings. Meanwhile, the L band data with FFT, Capon and the CS method are shown to work for the reconstruction of large manmade structures (such as bridges) and urban buildings

    Modeling of Subsurface Scattering from Ice Sheets for Pol-InSAR Applications

    Get PDF
    Remote sensing is a fundamental tool to measure the dynamics of ice sheets and provides valuable information for ice sheet projections under a changing climate. There is, however, the potential to further reduce the uncertainties in these projections by developing innovative remote sensing methods. One of these remote sensing techniques, the polarimetric synthetic aperture radar interferometry (Pol-InSAR), is known since decades to have the potential to assess the geophysical properties below the surface of ice sheets, because of the penetration of microwave signals into dry snow, firn, and ice. Despite this, only very few studies have addressed this topic and the development of robust Pol-InSAR applications is at an early stage. Two potential Pol-InSAR applications are identified as the motivation for this thesis. First, the estimation and compensation of the penetration bias in digital elevation models derived with SAR interferometry. This bias can lead to errors of several meters or even tens of meters in surface elevation measurements. Second, the estimation of geophysical properties of the subsurface of glaciers and ice sheets using Pol-InSAR techniques. There is indeed potential to derive information about melt-refreeze processes within the firn, which are related to density and affect the mass balance. Such Pol-InSAR applications can be a valuable information source with the potential for monthly ice sheet wide coverage and high spatial resolution provided by the next generation of SAR satellites. However, the required models to link the Pol-InSAR measurements to the subsurface properties are not yet established. The aim of this thesis is to improve the modeling of the vertical backscattering distribution in the subsurface of ice sheets and its effect on polarimetric interferometric SAR measurements at different frequencies. In order to achieve this, polarimetric interferometric multi-baseline SAR data at different frequencies and from two different test sites on the Greenland ice sheet are investigated. This thesis contributes with three concepts to a better understanding and to a more accurate modeling of the vertical backscattering distribution in the subsurface of ice sheets. First, the integration of scattering from distinct subsurface layers. These are formed by refrozen melt water in the upper percolation zone and cause an interesting coherence undulation pattern, which cannot be explained with previously existing models. This represents a first link between Pol-InSAR data and geophysical subsurface properties. The second step is the improved modeling of the general vertical backscattering distribution of the subsurface volume. The advantages of more flexible volume models are demonstrated, but interestingly, the simple modification of a previously existing model with a vertical shift parameter lead to the best agreement between model and data. The third contribution is the model based compensation of the penetration bias, which is experimentally validated. At the investigated test sites, it becomes evident that the model based estimates of the surface elevations are more accurate than the interferometric phase center locations, which are conventionally used to derive surface elevations of ice sheets. This thesis therefore improves the state of the art of subsurface scattering modeling for Pol-InSAR applications, demonstrates the model-based penetration bias compensation, and makes a further research step towards the retrieval of geophysical subsurface information with Pol-InSAR
    • …
    corecore