144 research outputs found

    ISME trends: Autonomous surface and underwater vehicles for geoseismic survey

    Get PDF
    The paper presents the recent and ongoing activities of the Italian Center named ISME on the use of Autonomous Surface Crafts (ASCs) and Autonomous Underwater Vehicles (AUVs) for geoseismic survey. In particular, the paper will focus on the technologies and the algorithms developed in the framework of the H2020 European Project WiMUST

    Gas hydrate technology: state of the art and future possibilities for Europe

    Get PDF
    Interest in natural gas hydrates has been steadily increasing over the last few decades, with the understanding that exploitation of this abundant unconventional source may help meet the ever-increasing energy demand and assist in reduction of CO2 emission (by replacing coal). Unfortunately, conventional technologies for oil and gas exploitation are not fully appropriate for the specific exploitation of gas hydrate. Consequently, the technology chain, from exploration through production to monitoring, needs to be further developed and adapted to the specific properties and conditions associated with gas hydrates, in order to allow for a commercially and environmentally sound extraction of gas from gas hydrate deposits. Various academic groups and companies within the European region have been heavily involved in theoretical and applied research of gas hydrate for more than a decade. To demonstrate this, Fig. 1.1 shows a selection of leading European institutes that are actively involved in gas hydrate research. A significant number of these institutes have been strongly involved in recent worldwide exploitation of gas hydrate, which are shown in Fig. 1.2 and summarized in Table 1.1. Despite the state of knowledge, no field trials have been carried out so far in European waters. MIGRATE (COST action ES1405) aims to pool together expertise of a large number of European research groups and industrial players to advance gas-hydrate related activity with the ultimate goal of preparing the setting for a field production test in European waters. This MIGRATE report presents an overview of current technologies related to gas hydrate exploration (Chapter 2), production (Chapter 3) and monitoring (Chapter 4), with an emphasis on European activity. This requires covering various activities within different disciplines, all of which contribute to the technology development needed for future cost-effective gas production. The report points out future research and work areas (Chapter 5) that would bridge existing knowledge gaps, through multinational collaboration and interdisciplinary approaches

    Acoustic pressure and particle velocity for spatial filtering of bottom arrivals

    Get PDF
    This paper discusses the advantages of using a combination of acoustic pressure and particle velocitymotion for filtering bottom arrivals. A possible area of application is reflection seismology where, traditionally, the seismic image is extracted from the bottom-reflected broadband acoustic signals received on hydrophones. Since hydrophones are omnidirectional in nature, the received bottom returns are often contaminated by waterborne signals, sea surface reflections, and noise. A substantial part of the processing of the data is dedicated to filtering out these unwanted signals. Today, vector sensors allow us to measure both acoustic pressure and particle velocity motion in a single and compact sensor. The combination of pressure and particle velocity measured at a single location or particle velocity and particle velocity gradient at closely spaced locations allows for spatial beam steering to predetermined directions and filter out unwanted replicas from other directions. Moreover, this can be done at the sensor level, dramatically decreasing the offline processing. The spatial filtering capabilities of various pressure-pressure, particle velocity-particle velocity, and pressure-particle velocity combinations are analyzed in view of filtering the bottom arrivals. It is shown that the combination of pressure and vertical particle velocity and, particularly, the combination of vertical particle velocity and particle velocity gradient enhance bottom arrivals. Moreover, a simple steering procedure combining pressure and particle velocity components of a triaxial sensor allows us to determine the tridimensional structure of the acoustic field and the separation of the bottom reflections. The spatial selectivity of the various sensor combinations is shown with simulations and verified with experimental data acquired with 10 cm separated vector sensors in the 800-1250-Hz band, during the Makai 2005 sea trial, off Kauai Island, HI, USA.This work was supported by the European Union H2020 Research Program under WiMUST Project (Contract 645141).info:eu-repo/semantics/publishedVersio

    Advanced Applications for Underwater Acoustic Modeling

    Get PDF

    Shallow marine acoustic imaging in environmental investigations

    Get PDF

    The development of ocean test beds for ocean technology adaptation and integration into the emerging U.S. offshore wind energy industry

    Get PDF
    The landscape of applied ocean technology is rapidly changing with forces of innovation emerging from basic ocean science research methodologies as well as onshore high tech sectors. There is a critical need for ocean-related industries to continue to modernize via the adoption of state-of-the-art practices to advance rapidly changing industry objectives, maintain competitiveness, and be careful stewards of the ocean as a common resource. These objectives are of national importance for the dynamic ocean energy sector, and a mechanism by which new and promising technologies can be validated and adopted in an open and benchmarked process is needed. POWER-US seeks to develop Ocean Test Beds as research and development infrastructure capable of driving innovative observations, modeling, and monitoring of the physical, biological, and use characteristics present in offshore wind energy installation areas.AK acknowledges internal support from the Woods Hole Oceanographic Institution via the Houghton Foundation Award

    Next Generation European Research Vessels: Current Status and Foreseeable Evolution

    Get PDF
    The European research vessel fleet plays a vital role in supporting scientific research and development not just in Europe but also across the globe. This document explores how the fleet has developed since the publication of the European Marine Board Position Paper 10 (EMB PP 10) "European Ocean Research Fleets – Towards a Common Strategy and Enhanced Use" (Binot et al., 2007). It looks at the current fleet and its equipment and capabilities (Chapter 2), the deep sea (Chapter 3) and Polar regions (Chapter 4) as study areas of ever- increasing importance for science and for the vessels that explore them, the role that research vessels play in the wider ocean observing landscape (Chapter 5), the importance of training personnel for research vessels (Chapter 6), and considers management of the European research vessel fleet (Chapter 7). This Position Paper considers what has changed since 2007, what the status is in 2019, and future directions for the European fleet, with a 10-year horizon to 2030. This Position Paper finds that the current European research vessel fleet is highly capable, and is able to provide excellent support to European marine science and wider scientific research and can lead on the world stage. However, with a typical life expectancy of a research vessel of 30 years, the fleet is ageing and urgently requires further investment and reinvestment to continue to be as efficient and capable as the scientific community expects and requires. The capabilities of the fleet have increased considerably since 2007, and vessels have kept up with fast-paced technological developments. The demand for complex and highly capable vessels will continue, and research vessel designs and the fleet as a whole will need to keep pace in order to remain fit-for-purpose and continue to be a key player globally. There is huge diversity in vessel types and designs in terms of capabilities and equipment, management structures and processes, and training possibilities. While it would not be possible or appropriate to highlight any one approach as the only one to use, a growing trend in collaboration through community groups, agreements, legal entities and funded projects now enables more strategic thinking in the development of these vital infrastructures. However, some issues remain in enabling equal access to research vessel time for all researchers across Europe regardless of country, and regardless of whether or not that country owns a suitable research vessel for their scientific needs

    Natural and anthropogenic fluid migration pathways in marine sediments

    Get PDF
    Fluids are an important agent in nearly all geologic processes that shape the planet Earth. Fluid abundance and composition are governed by flow along permeable beds or natural and anthropogenic structures in the subsurface including faults, wells, and chimneys/pipes. Spatial and temporal variations in fluid flow activity modify total fluxes between geosphere, cryosphere, hydrosphere, and atmosphere. These fluxes have broad implications for geological processes including the formation of natural resources or the occurrence of geohazards including landslides, earthquakes and blowouts. They further play a crucial role for the global carbon cycles and the climate system. A qualitative and quantitative understanding of fluid flow in the subsurface is therefore important to assess the role of fluids in the Earth system and to quantify fluxes from the geosphere into the hydro- and atmosphere. In this Ph.D. thesis I use an integrated, interdisciplinary approach to study natural and anthropogenic fluid migration pathways in marine sediments in the North Sea, the convergent Hikurangi margin, and a section of the ancient Tethys margin which is now exposed near Varna, Bulgaria. The applied methods include conventional 3D seismic, high-resolution 3D seismic, and 2D seismic data as well as hydroacoustic, sedimentological, unmanned aerial vehicle-based photogrammetric and geochemical data. In each of the studied systems, natural and/or anthropogenic fluid migration pathways allow the transport of significant amounts of fluids through marine sediments towards the seafloor. Often the co-existence of multiple pathways enables the fluids to bypass permeability barriers within the Earth’s crust resulting in the formation of structurally complex flow systems. Focused fluid flow along normal faults in the Hikurangi margin likely plays an active role in the subduction drainage system, influences the slope stability and the morphotectonic evolution of the margin. Results from the Eocene Tethys margin show that focused fluid flow in marine sediments is possible in unconsolidated sands if seepage is focused at the top of faulted units and the flux rate is high enough. This stands in contrast to the general assumption that focused fluid flow in marine sediments is limited to low-permeable sediments. In the marine environment the term fluid flow is often used to exclusively refer to the flow of hydrocarbons. However, geochemical data from the North Sea and the Tethys margin indicate that the involved fluids are of different origin including compaction-related dehydration and submarine groundwater discharge. In each of the investigated cases, the temporal and spatial evolution of fluid flow is not fully addressed yet, especially with regard to vertical fluid conduits or the safety of subsurface drilling and storage operations. The results of my thesis highlight that the investigation of fluid migration pathways requires an interdisciplinary approach which may indicate the origin of the fluids, help understand the fluxes of fluids from the geosphere into the hydrosphere and atmosphere of the past, present and future and reveal the resulting consequences for the global carbon cycles and the climate system
    • 

    corecore