2,739 research outputs found

    Knowledge-infused and Consistent Complex Event Processing over Real-time and Persistent Streams

    Full text link
    Emerging applications in Internet of Things (IoT) and Cyber-Physical Systems (CPS) present novel challenges to Big Data platforms for performing online analytics. Ubiquitous sensors from IoT deployments are able to generate data streams at high velocity, that include information from a variety of domains, and accumulate to large volumes on disk. Complex Event Processing (CEP) is recognized as an important real-time computing paradigm for analyzing continuous data streams. However, existing work on CEP is largely limited to relational query processing, exposing two distinctive gaps for query specification and execution: (1) infusing the relational query model with higher level knowledge semantics, and (2) seamless query evaluation across temporal spaces that span past, present and future events. These allow accessible analytics over data streams having properties from different disciplines, and help span the velocity (real-time) and volume (persistent) dimensions. In this article, we introduce a Knowledge-infused CEP (X-CEP) framework that provides domain-aware knowledge query constructs along with temporal operators that allow end-to-end queries to span across real-time and persistent streams. We translate this query model to efficient query execution over online and offline data streams, proposing several optimizations to mitigate the overheads introduced by evaluating semantic predicates and in accessing high-volume historic data streams. The proposed X-CEP query model and execution approaches are implemented in our prototype semantic CEP engine, SCEPter. We validate our query model using domain-aware CEP queries from a real-world Smart Power Grid application, and experimentally analyze the benefits of our optimizations for executing these queries, using event streams from a campus-microgrid IoT deployment.Comment: 34 pages, 16 figures, accepted in Future Generation Computer Systems, October 27, 201

    Towards Semantic Integration of Heterogeneous Sensor Data with Indigenous Knowledge for Drought Forecasting

    Full text link
    In the Internet of Things (IoT) domain, various heterogeneous ubiquitous devices would be able to connect and communicate with each other seamlessly, irrespective of the domain. Semantic representation of data through detailed standardized annotation has shown to improve the integration of the interconnected heterogeneous devices. However, the semantic representation of these heterogeneous data sources for environmental monitoring systems is not yet well supported. To achieve the maximum benefits of IoT for drought forecasting, a dedicated semantic middleware solution is required. This research proposes a middleware that semantically represents and integrates heterogeneous data sources with indigenous knowledge based on a unified ontology for an accurate IoT-based drought early warning system (DEWS).Comment: 5 pages, 3 figures, In Proceedings of the Doctoral Symposium of the 16th International Middleware Conference (Middleware Doct Symposium 2015), Ivan Beschastnikh and Wouter Joosen (Eds.). ACM, New York, NY, US

    Ontology-Based Context-Aware Service Discovery for Pervasive Environments

    Get PDF
    Existing service discovery protocols use a service matching process in order to offer services of interest to the clients. Potentially, the context information of the services and client can be used to improve the quality of service matching. To make use of context information in service matching, service discovery needs to address certain challenges. Firstly, it is required that the context information should have unambiguous representation. Secondly, the mobile devices should be able to disseminate context information seamlessly in the fixed network. And thirdly, dynamic nature of the context information should be taken into account. The proposed Context Aware Service Discovery (CASD) architecture deals with these challenges by means of an ontological representation and processing of context information, a concept of nomadic mobile context source and a mechanism of persistent service discovery respectively. This paper discusses proposed CASD architecture, its implementation and suggests further enhancements

    Une approche d'ontologie pour la modélisation des connaissances et l’interrogation des capteurs de réseaux sans fil

    Get PDF
    International audienceWireless sensor networks (WSNs) generate large volumes of raw data which increases the difficulty for applications to manage and query sensor data. WSNs are normally application specific with no sharing or reusability of sensor data among applications. In order for applications to be developed independently of particular WSNs, sensor data need to be enriched with semantic information. Ontologies are widely used as a means for solving the information heterogeneity problems because of their capability to provide explicit meaning to the information. This paper presents our work towards the development of a wireless sensor network ontology. Based on the proposed ontology we use the SPARQL query language to enable querying of sensor data. We present the description of the development of the proposed ontology, partial evaluation of the early prototype ontology, a discussion of design and implementation issues, and directions for future research works.Les réseaux de capteurs sans fil (WSN) génèrent de gros volumes de données brutes, ce qui complique la gestion et l'interrogation des données des capteurs par les applications. Les WSN sont normalement spécifiques à une application, sans partage ni possibilité de réutilisation des données de capteur entre les applications. Pour que les applications puissent être développées indépendamment de certains WSN, les données des capteurs doivent être enrichies d'informations sémantiques. Les ontologies sont largement utilisées pour résoudre les problèmes d'hétérogénéité de l'information en raison de leur capacité à donner un sens explicite à l'information. Cet article présente nos travaux en vue du développement d’une ontologie de réseau de capteurs sans fil. Sur la base de l'ontologie proposée, nous utilisons le langage de requête SPARQL pour permettre l'interrogation des données du capteur. Nous présentons la description du développement de l'ontologie proposée, une évaluation partielle de l'ontologie du prototype initial, une discussion des problèmes de conception et de mise en œuvre et des orientations pour les travaux de recherche futurs

    Semantic Gateway as a Service architecture for IoT Interoperability

    Get PDF
    The Internet of Things (IoT) is set to occupy a substantial component of future Internet. The IoT connects sensors and devices that record physical observations to applications and services of the Internet. As a successor to technologies such as RFID and Wireless Sensor Networks (WSN), the IoT has stumbled into vertical silos of proprietary systems, providing little or no interoperability with similar systems. As the IoT represents future state of the Internet, an intelligent and scalable architecture is required to provide connectivity between these silos, enabling discovery of physical sensors and interpretation of messages between things. This paper proposes a gateway and Semantic Web enabled IoT architecture to provide interoperability between systems using established communication and data standards. The Semantic Gateway as Service (SGS) allows translation between messaging protocols such as XMPP, CoAP and MQTT via a multi-protocol proxy architecture. Utilization of broadly accepted specifications such as W3C's Semantic Sensor Network (SSN) ontology for semantic annotations of sensor data provide semantic interoperability between messages and support semantic reasoning to obtain higher-level actionable knowledge from low-level sensor data.Comment: 16 page

    Publishing LO(D)D: Linked Open (Dynamic) Data for Smart Sensing and Measuring Environments

    Get PDF
    The paper proposes a distributed framework that provides a systematic way to publish environment data which is being updated continuously; such updates might be issued at specific time intervals or bound to some environment- specific event. The framework targets smart environments having networks of devices and sensors which are interacting with each other and with their respective environments to gather and generate data and willing to publish this data. This paper addresses the issues of supporting the data publishers to maintain up-to-date and machine understandable representations, separation of views (static or dynamic data) and delivering up-to-date information to data consumers in real time, helping data consumers to keep track of changes triggered from diverse environments and keeping track of evolution of the smart environment. The paper also describes a prototype implementation of the proposed architecture. A preliminary use case implementation over a real energy metering infrastructure is also provided in the paper to prove the feasibility of the architectur

    Challenges in Bridging Social Semantics and Formal Semantics on the Web

    Get PDF
    This paper describes several results of Wimmics, a research lab which names stands for: web-instrumented man-machine interactions, communities, and semantics. The approaches introduced here rely on graph-oriented knowledge representation, reasoning and operationalization to model and support actors, actions and interactions in web-based epistemic communities. The re-search results are applied to support and foster interactions in online communities and manage their resources

    Estimating Fire Weather Indices via Semantic Reasoning over Wireless Sensor Network Data Streams

    Full text link
    Wildfires are frequent, devastating events in Australia that regularly cause significant loss of life and widespread property damage. Fire weather indices are a widely-adopted method for measuring fire danger and they play a significant role in issuing bushfire warnings and in anticipating demand for bushfire management resources. Existing systems that calculate fire weather indices are limited due to low spatial and temporal resolution. Localized wireless sensor networks, on the other hand, gather continuous sensor data measuring variables such as air temperature, relative humidity, rainfall and wind speed at high resolutions. However, using wireless sensor networks to estimate fire weather indices is a challenge due to data quality issues, lack of standard data formats and lack of agreement on thresholds and methods for calculating fire weather indices. Within the scope of this paper, we propose a standardized approach to calculating Fire Weather Indices (a.k.a. fire danger ratings) and overcome a number of the challenges by applying Semantic Web Technologies to the processing of data streams from a wireless sensor network deployed in the Springbrook region of South East Queensland. This paper describes the underlying ontologies, the semantic reasoning and the Semantic Fire Weather Index (SFWI) system that we have developed to enable domain experts to specify and adapt rules for calculating Fire Weather Indices. We also describe the Web-based mapping interface that we have developed, that enables users to improve their understanding of how fire weather indices vary over time within a particular region.Finally, we discuss our evaluation results that indicate that the proposed system outperforms state-of-the-art techniques in terms of accuracy, precision and query performance.Comment: 20pages, 12 figure
    corecore