268 research outputs found

    SEISMIC: A Self-Exciting Point Process Model for Predicting Tweet Popularity

    Full text link
    Social networking websites allow users to create and share content. Big information cascades of post resharing can form as users of these sites reshare others' posts with their friends and followers. One of the central challenges in understanding such cascading behaviors is in forecasting information outbreaks, where a single post becomes widely popular by being reshared by many users. In this paper, we focus on predicting the final number of reshares of a given post. We build on the theory of self-exciting point processes to develop a statistical model that allows us to make accurate predictions. Our model requires no training or expensive feature engineering. It results in a simple and efficiently computable formula that allows us to answer questions, in real-time, such as: Given a post's resharing history so far, what is our current estimate of its final number of reshares? Is the post resharing cascade past the initial stage of explosive growth? And, which posts will be the most reshared in the future? We validate our model using one month of complete Twitter data and demonstrate a strong improvement in predictive accuracy over existing approaches. Our model gives only 15% relative error in predicting final size of an average information cascade after observing it for just one hour.Comment: 10 pages, published in KDD 201

    Crisis Communication Patterns in Social Media during Hurricane Sandy

    Full text link
    Hurricane Sandy was one of the deadliest and costliest of hurricanes over the past few decades. Many states experienced significant power outage, however many people used social media to communicate while having limited or no access to traditional information sources. In this study, we explored the evolution of various communication patterns using machine learning techniques and determined user concerns that emerged over the course of Hurricane Sandy. The original data included ~52M tweets coming from ~13M users between October 14, 2012 and November 12, 2012. We run topic model on ~763K tweets from top 4,029 most frequent users who tweeted about Sandy at least 100 times. We identified 250 well-defined communication patterns based on perplexity. Conversations of most frequent and relevant users indicate the evolution of numerous storm-phase (warning, response, and recovery) specific topics. People were also concerned about storm location and time, media coverage, and activities of political leaders and celebrities. We also present each relevant keyword that contributed to one particular pattern of user concerns. Such keywords would be particularly meaningful in targeted information spreading and effective crisis communication in similar major disasters. Each of these words can also be helpful for efficient hash-tagging to reach target audience as needed via social media. The pattern recognition approach of this study can be used in identifying real time user needs in future crises

    Measuring Emotional Contagion in Social Media

    Full text link
    Social media are used as main discussion channels by millions of individuals every day. The content individuals produce in daily social-media-based micro-communications, and the emotions therein expressed, may impact the emotional states of others. A recent experiment performed on Facebook hypothesized that emotions spread online, even in absence of non-verbal cues typical of in-person interactions, and that individuals are more likely to adopt positive or negative emotions if these are over-expressed in their social network. Experiments of this type, however, raise ethical concerns, as they require massive-scale content manipulation with unknown consequences for the individuals therein involved. Here, we study the dynamics of emotional contagion using Twitter. Rather than manipulating content, we devise a null model that discounts some confounding factors (including the effect of emotional contagion). We measure the emotional valence of content the users are exposed to before posting their own tweets. We determine that on average a negative post follows an over-exposure to 4.34% more negative content than baseline, while positive posts occur after an average over-exposure to 4.50% more positive contents. We highlight the presence of a linear relationship between the average emotional valence of the stimuli users are exposed to, and that of the responses they produce. We also identify two different classes of individuals: highly and scarcely susceptible to emotional contagion. Highly susceptible users are significantly less inclined to adopt negative emotions than the scarcely susceptible ones, but equally likely to adopt positive emotions. In general, the likelihood of adopting positive emotions is much greater than that of negative emotions.Comment: 10 pages, 5 figure
    • …
    corecore