2,264 research outputs found

    21st Century Simulation: Exploiting High Performance Computing and Data Analysis

    Get PDF
    This paper identifies, defines, and analyzes the limitations imposed on Modeling and Simulation by outmoded paradigms in computer utilization and data analysis. The authors then discuss two emerging capabilities to overcome these limitations: High Performance Parallel Computing and Advanced Data Analysis. First, parallel computing, in supercomputers and Linux clusters, has proven effective by providing users an advantage in computing power. This has been characterized as a ten-year lead over the use of single-processor computers. Second, advanced data analysis techniques are both necessitated and enabled by this leap in computing power. JFCOM's JESPP project is one of the few simulation initiatives to effectively embrace these concepts. The challenges facing the defense analyst today have grown to include the need to consider operations among non-combatant populations, to focus on impacts to civilian infrastructure, to differentiate combatants from non-combatants, and to understand non-linear, asymmetric warfare. These requirements stretch both current computational techniques and data analysis methodologies. In this paper, documented examples and potential solutions will be advanced. The authors discuss the paths to successful implementation based on their experience. Reviewed technologies include parallel computing, cluster computing, grid computing, data logging, OpsResearch, database advances, data mining, evolutionary computing, genetic algorithms, and Monte Carlo sensitivity analyses. The modeling and simulation community has significant potential to provide more opportunities for training and analysis. Simulations must include increasingly sophisticated environments, better emulations of foes, and more realistic civilian populations. Overcoming the implementation challenges will produce dramatically better insights, for trainees and analysts. High Performance Parallel Computing and Advanced Data Analysis promise increased understanding of future vulnerabilities to help avoid unneeded mission failures and unacceptable personnel losses. The authors set forth road maps for rapid prototyping and adoption of advanced capabilities. They discuss the beneficial impact of embracing these technologies, as well as risk mitigation required to ensure success

    Optimize parallel numerical applications for climate modelling

    Get PDF
    Aquest projecte vol avaluar els possibles beneficis d'implementar paral·lelisme amb memòria compartida en la versió més recent del model NEMO, el qual actualment només fa servir paral·lelisme amb memòria distribuida utilitzant MPI. Generalment les paral·lelitzacions híbrides, que explotan memòria distribuida i compartida, fent servir ambdós paradigmes de paral·lelisme són més eficients. Amb el llançament de l'última versió de NEMO 4.2 amb millores a l'escalabilitat, volem avaluar el rendiment de OpenMP per a implementar el paral·lelisme híbrid amb els objectius de millorar l'escalabilitat del model i preparar-lo per a les noves arquitectures de clusters, les quals estan tendint a incrementar el nombre de nuclis per node.This project wants to evaluate the possible benefits of implementing shared memory parallelism in the most recent version of the NEMO model which currently uses distributed memory parallelism with MPI. Generally, hybrid parallelizations, which exploit distributed and shared memory, using both parallelism paradigms are more efficient. With the release of the latest version of NEMO 4.2 with improvements on the scalability, we want to evaluate the performance of OpenMP to implement the hybrid parallelism in order to improve the model's scalability and making it better suited for the new cluster architectures, which are tending towards increasing the amount of cores per node

    Assessing the Performance of MPI Applications Through Time-Independent Trace Replay

    Get PDF
    International audienceSimulation is a popular approach to obtain objective performance indicators platforms that are not at one's disposal. It may help the dimensioning of compute clusters in large computing centers. In this work we present a framework for the off-line simulation of MPI applications. Its main originality with regard to the literature is to rely on time-independent execution traces. This allows us to completely decouple the acquisition process from the actual replay of the traces in a simulation context. Then we are able to acquire traces for large application instances without being limited to an execution on a single compute cluster. Finally our framework is built on top of a scalable, fast, and validated simulation kernel. In this paper, we present the used time-independent trace format, investigate several acquisition strategies, detail the developed trace replay tool, and assess the quality of our simulation framework in terms of accuracy, acquisition time, simulation time, and trace size.La simulation est une approche très populaire pour obtenir des indicateurs de performances objectifs sur des plates-formes qui ne sont pas disponibles. Cela peut permettre le dimensionnement de grappes de calculs au sein de grands centres de calcul. Dans cet article nous présentons un outil de simulation post-mortem d'applications MPI. Sa principale originalité au regard de la littérature est d'utiliser des traces d'exécution indépendantes du temps. Cela permet de découpler intégralement le processus d'acquisition des traces de celui de rejeu dans un contexte de simulation. Il est ainsi possible d'obtenir des traces pour de grandes instances de problèmes sans être limité à des exécutions au sein d'une unique grappe. Enfin notre outil est développé au dessus d'un noyau de simulation scalable, rapide et validé. Cet article présente le format de traces indépendantes du temps utilisé, étudie plusieurs stratégies d'acquisition, détaille l'outil de rejeu que nous avons dévelopé, et evalué la qualité de nos simulations en termes de précision, temps d'acuisition, temps de simulation et tailles de traces

    Multi-Architecture Monte-Carlo (MC) Simulation of Soft Coarse-Grained Polymeric Materials: SOft coarse grained Monte-carlo Acceleration (SOMA)

    Full text link
    Multi-component polymer systems are important for the development of new materials because of their ability to phase-separate or self-assemble into nano-structures. The Single-Chain-in-Mean-Field (SCMF) algorithm in conjunction with a soft, coarse-grained polymer model is an established technique to investigate these soft-matter systems. Here we present an im- plementation of this method: SOft coarse grained Monte-carlo Accelera- tion (SOMA). It is suitable to simulate large system sizes with up to billions of particles, yet versatile enough to study properties of different kinds of molecular architectures and interactions. We achieve efficiency of the simulations commissioning accelerators like GPUs on both workstations as well as supercomputers. The implementa- tion remains flexible and maintainable because of the implementation of the scientific programming language enhanced by OpenACC pragmas for the accelerators. We present implementation details and features of the program package, investigate the scalability of our implementation SOMA, and discuss two applications, which cover system sizes that are difficult to reach with other, common particle-based simulation methods

    Proceedings of the First PhD Symposium on Sustainable Ultrascale Computing Systems (NESUS PhD 2016)

    Get PDF
    Proceedings of the First PhD Symposium on Sustainable Ultrascale Computing Systems (NESUS PhD 2016) Timisoara, Romania. February 8-11, 2016.The PhD Symposium was a very good opportunity for the young researchers to share information and knowledge, to present their current research, and to discuss topics with other students in order to look for synergies and common research topics. The idea was very successful and the assessment made by the PhD Student was very good. It also helped to achieve one of the major goals of the NESUS Action: to establish an open European research network targeting sustainable solutions for ultrascale computing aiming at cross fertilization among HPC, large scale distributed systems, and big data management, training, contributing to glue disparate researchers working across different areas and provide a meeting ground for researchers in these separate areas to exchange ideas, to identify synergies, and to pursue common activities in research topics such as sustainable software solutions (applications and system software stack), data management, energy efficiency, and resilience.European Cooperation in Science and Technology. COS

    ATCOM: Automatically tuned collective communication system for SMP clusters.

    Get PDF
    Conventional implementations of collective communications are based on point-to-point communications, and their optimizations have been focused on efficiency of those communication algorithms. However, point-to-point communications are not the optimal choice for modern computing clusters of SMPs due to their two-level communication structure. In recent years, a few research efforts have investigated efficient collective communications for SMP clusters. This dissertation is focused on platform-independent algorithms and implementations in this area;There are two main approaches to implementing efficient collective communications for clusters of SMPs: using shared memory operations for intra-node communications, and over-lapping inter-node/intra-node communications. The former fully utilizes the hardware based shared memory of an SMP, and the latter takes advantage of the inherent hierarchy of the communications within a cluster of SMPs. Previous studies focused on clusters of SMP from certain vendors. However, the previously proposed methods are not portable to other systems. Because the performance optimization issue is very complicated and the developing process is very time consuming, it is highly desired to have self-tuning, platform-independent implementations. As proven in this dissertation, such an implementation can significantly outperform the other point-to-point based portable implementations and some platform-specific implementations;The dissertation describes in detail the architecture of the platform-independent implementation. There are four system components: shared memory-based collective communications, overlapping mechanisms for inter-node and intra-node communications, a prediction-based tuning module and a micro-benchmark based tuning module. Each component is carefully designed with the goal of automatic tuning in mind

    Many-Task Computing and Blue Waters

    Full text link
    This report discusses many-task computing (MTC) generically and in the context of the proposed Blue Waters systems, which is planned to be the largest NSF-funded supercomputer when it begins production use in 2012. The aim of this report is to inform the BW project about MTC, including understanding aspects of MTC applications that can be used to characterize the domain and understanding the implications of these aspects to middleware and policies. Many MTC applications do not neatly fit the stereotypes of high-performance computing (HPC) or high-throughput computing (HTC) applications. Like HTC applications, by definition MTC applications are structured as graphs of discrete tasks, with explicit input and output dependencies forming the graph edges. However, MTC applications have significant features that distinguish them from typical HTC applications. In particular, different engineering constraints for hardware and software must be met in order to support these applications. HTC applications have traditionally run on platforms such as grids and clusters, through either workflow systems or parallel programming systems. MTC applications, in contrast, will often demand a short time to solution, may be communication intensive or data intensive, and may comprise very short tasks. Therefore, hardware and software for MTC must be engineered to support the additional communication and I/O and must minimize task dispatch overheads. The hardware of large-scale HPC systems, with its high degree of parallelism and support for intensive communication, is well suited for MTC applications. However, HPC systems often lack a dynamic resource-provisioning feature, are not ideal for task communication via the file system, and have an I/O system that is not optimized for MTC-style applications. Hence, additional software support is likely to be required to gain full benefit from the HPC hardware
    • …
    corecore