192,690 research outputs found

    A Model-Based Approach to Managing Feature Binding Time in Software Product Line Engineering

    Get PDF
    Software Product Line Engineering (SPLE) is a software reuse paradigm for developing software products, from managed reusable assets, based on analysis of commonality and variability (C & V) of a product line. Many approaches of SPLE use a feature as a key abstraction to capture the C&V. Recently, there have been increasing demands for the provision of flexibility about not only the variability of features but also the variability of when features should be selected (i.e., variability on feature binding times). Current approaches to support variations of feature binding time mostly focused on ad hoc implementation mechanisms. In this paper, we first identify the challenges of feature binding time management and then propose an approach to analyze the variation of feature binding times and use the results to specify model-based architectural components for the product line. Based on the specification, components implementing variable features are parameterized with the binding times and the source codes for the components and the connection between them are generated

    A MDE-based process for the design, implementation and validation of safety critical systems

    Get PDF
    Distributed Real-Time Embedded (DRE) systems have critical requirements that need to be verified. They are either related to functional (e.g. stability of a furnace controller) or non-functional (e.g. meeting deadlines) aspects. Model-Driven Engineering (MDE) tools have emerged to ease DRE systems design. These tools are also capable of generating code. However, these tools either focus on the functional aspects or on the runtime architecture. Hence, the development cycle is partitioned into pieces with heterogeneous modeling notations and poor coordination. In this paper, we propose a MDE-based process to create DRE systems without manual coding. We show how to integrate functional and architecture concerns in a unified process. We use industry-proven modeling languages to design functional elements of the system, and automatically integrate them using our AADL toolchain
    corecore