636 research outputs found

    Petri net approaches for modeling, controlling, and validating flexible manufacturing systems

    Get PDF
    In this dissertation, we introduce the fundamental ideas and constructs of Petri net models such as ordinary, timed, colored, stochastic, control, and neural, and present some studies that emphasize Petri nets theories and applications as extended research fields that provide suitable platforms in modeling, controlling, validating, and evaluating concurrent systems, information systems, and a versatile dynamic system and manufacturing systems;We then suggest some of extensions that help make Petri nets useful for modeling and analyzing discrete event systems and manufacturing systems models based on the context of a versatile manufacturing system, and applies extended Petri nets models to several manufacturing systems such as an assembly cell, an Automated Palletized Conveyor System, and a tooling machine to show increased modeling power and efficient analysis methods;Finally, Validation methods are presented for these models and results of a performance analysis from a deterministic and stochastic model are used to reorganize and re-evaluate a manufacturing system in order to increase its flexibility

    Fluid Petri Nets for the Performance Evaluation of MapReduce Applications

    Get PDF
    Big Data applications allow to successfully analyze large amounts of data not necessarily structured, though at the same time they present new challenges. For example, predicting the performance of frameworks such as Hadoop can be a costly task, hence the necessity to provide models that can be a valuable support for designers and developers. This paper provides a new contribution in studying a novel modeling approach based on fluid Petri nets to predict MapReduce jobs execution time. The experiments we performed at CINECA, the Italian supercomputing center, have shown that the achieved accuracy is within 16% of the actual measurements on average

    Reliability engineering of large jit production systems

    Get PDF
    This paper introduces the rationale and the fundamental elements and algorithms of a reliability engineering methodology, and discusses its application to the design of a large, multi-cell and heterogeneous production system with just-in-time (JIT) deliveries. The failure analysis and the non-reliability costs assessment of such systems is a complex task. In order to cope with such complexity, a two level hierarchical modelling and evaluation framework was developed. According to this framework, the internal behaviour of each manufacturing cell and the overall flow of materials are described, respectively, by local and global models. Local models are firstly obtained from the failure and repair processes of the manufacturing equipment. Then, these models are combined with the failure propagation delays introduced by the work-in-process buffers in order to obtain the system level model. The second part of the paper addresses several design issues of the production system that directly impact the reliability of the deliveries, such as the layout of the plant, the redundancy of the manufacturing equipment and the capacity of the work-in-process buffers. A distinctive feature of the reliability evaluation algorithm resides on the ability to deal with reliability models containing stochastic processes with generalized distributions. This fundamental requirement comes from the fact that repair and failure propagation processes typically present hyper-exponential distributions, e.g., lognormal distributions, that can’t be assessed using the conventional reliability techniques. The paper will also explain how the behavioural and structural characteristics of JIT production systems were explored in order to implement effective evaluation algorithms that fit the requirements of this class of systems.DST -Department of Science and Technology, Government of Kerala(600/09

    Decision systems : the relation between problem specification and mathematical analysis

    Get PDF
    In this paper it is demonstrated that automated support for decision making of a tactical or strategic nature requires a solver-independent medium for describing decision situations. Such a medium may be specific for one environment, but it is also possible to develop media for certain types of environments. By using such a medium one obtains a decoupling of problem formulation and method of analysis. This makes it possible to use (parts of) the problem formulation as input for different types of models. Such problem formulations may provide mathematical models themselves, although they might also contain some less formal features. The decoupling makes it possible to choose problem formulations which are much closer to the original decision situation than would otherwise be possible with formulations in terms of a preselected solver. The argumentation is illustrated by treating a language for specifying goods flow problems in some detail. This language is based on timed coloured Petri-nets
    • 

    corecore