5,029 research outputs found

    A Taxonomy of Workflow Management Systems for Grid Computing

    Full text link
    With the advent of Grid and application technologies, scientists and engineers are building more and more complex applications to manage and process large data sets, and execute scientific experiments on distributed resources. Such application scenarios require means for composing and executing complex workflows. Therefore, many efforts have been made towards the development of workflow management systems for Grid computing. In this paper, we propose a taxonomy that characterizes and classifies various approaches for building and executing workflows on Grids. We also survey several representative Grid workflow systems developed by various projects world-wide to demonstrate the comprehensiveness of the taxonomy. The taxonomy not only highlights the design and engineering similarities and differences of state-of-the-art in Grid workflow systems, but also identifies the areas that need further research.Comment: 29 pages, 15 figure

    A Taxonomy of Data Grids for Distributed Data Sharing, Management and Processing

    Full text link
    Data Grids have been adopted as the platform for scientific communities that need to share, access, transport, process and manage large data collections distributed worldwide. They combine high-end computing technologies with high-performance networking and wide-area storage management techniques. In this paper, we discuss the key concepts behind Data Grids and compare them with other data sharing and distribution paradigms such as content delivery networks, peer-to-peer networks and distributed databases. We then provide comprehensive taxonomies that cover various aspects of architecture, data transportation, data replication and resource allocation and scheduling. Finally, we map the proposed taxonomy to various Data Grid systems not only to validate the taxonomy but also to identify areas for future exploration. Through this taxonomy, we aim to categorise existing systems to better understand their goals and their methodology. This would help evaluate their applicability for solving similar problems. This taxonomy also provides a "gap analysis" of this area through which researchers can potentially identify new issues for investigation. Finally, we hope that the proposed taxonomy and mapping also helps to provide an easy way for new practitioners to understand this complex area of research.Comment: 46 pages, 16 figures, Technical Repor

    Selfish grids: Game-theoretic modeling and NAS/PSA benchmark evaluation

    Get PDF
    Selfish behaviors of individual machines in a Grid can potentially damage the performance of the system as a whole. However, scrutinizing the Grid by taking into account the noncooperativeness of machines is a largely unexplored research problem. In this paper, we first present a new hierarchical game-theoretic model of the Grid that matches well with the physical administrative structure in real-life situations. We then focus on the impact of selfishness in intrasite job execution mechanisms. Based on our novel utility functions, we analytically derive the Nash equilibrium and optimal strategies for the general case. To study the effects of different strategies, we have also performed extensive simulations by using a well-known practical scheduling algorithm over the NAS (Numerical Aerodynamic Simulation) and the PSA (Parameter Sweep Application) workloads. We have studied the overall job execution performance of the Grid system under a wide range of parameters. Specifically, we find that the Optimal selfish strategy significantly outperforms the Nash selfish strategy. Our performance evaluation results can serve as a valuable reference for designing appropriate strategies in a practical Grid. © 2007 IEEE.published_or_final_versio
    • …
    corecore