73 research outputs found

    European Strategy for Particle Physics -- Accelerator R&D Roadmap

    Get PDF
    The 2020 update of the European Strategy for Particle Physics emphasised the importance of an intensified and well-coordinated programme of accelerator R&D, supporting the design and delivery of future particle accelerators in a timely, affordable and sustainable way. This report sets out a roadmap for European accelerator R&D for the next five to ten years, covering five topical areas identified in the Strategy update. The R&D objectives include: improvement of the performance and cost-performance of magnet and radio-frequency acceleration systems; investigations of the potential of laser / plasma acceleration and energy-recovery linac techniques; and development of new concepts for muon beams and muon colliders. The goal of the roadmap is to document the collective view of the field on the next steps for the R&D programme, and to provide the evidence base to support subsequent decisions on prioritisation, resourcing and implementation.Comment: 270 pages, 58 figures. Editor: N. Mounet. LDG chair: D. Newbold. Panel chairs: P. V\'edrine (HFM), S. Bousson (RF), R. Assmann (plasma), D. Schulte (muon), M. Klein (ERL). Panel editors: B. Baudouy (HFM), L. Bottura (HFM), S. Bousson (RF), G. Burt (RF), R. Assmann (plasma), E. Gschwendtner (plasma), R. Ischebeck (plasma), C. Rogers (muon), D. Schulte (muon), M. Klein (ERL

    FY10 Engineering Innovations, Research and Technology Report

    Full text link

    Technological developments allowing for the widespread clinical adoption of proton radiotherapy

    Get PDF
    External beam radiation therapy using accelerated protons has undergone significant development since the first patients were treated with accelerated protons in 1954. Widespread adoption of proton therapy is now taking place and is fully justified based on early clinical and technical research and development. Two of the main advantages of proton radiotherapy are improved healthy tissue sparing and increased dose conformation. The latter has been improved dramatically through the clinical realization of Pencil Beam Scanning (PBS). Other significant advancements in the past 30 years have also helped to establish proton radiotherapy as a major clinical modality in the cancer-fighting arsenal. Proton radiotherapy technologies are constantly evolving, and several major breakthroughs have been accomplished which could allow for a major revolution in proton therapy if clinically implemented. In this thesis, I will present research and innovative developments that I personally initiated or participated in that brought proton radiotherapy to its current state as well as my ongoing involvement in leading research and technological developments which will aid in the mass adoption of proton radiotherapy. These include beam dosimetry, patient positioning technologies, and creative methods that verify the Monte Carlo dose calculations which are now used in proton treatment planning. I will also discuss major technological advances concerning beam delivery that should be implemented clinically and new paradigms towards patient positioning. Many of these developments and technologies can benefit the cancer patient population worldwide and are now ready for mass clinical implementation. These developments will improve proton radiotherapy efficiencies and further reduce the cost of proton therapy facilities. This thesis therefore reflects my historical and ongoing efforts to meet market costs and time demands so that the clinical benefit of proton radiotherapy can be realized by a more significant fraction of cancer patients worldwide

    The study and development of pulsed high-field magnets for application in laser-plasma physics

    Get PDF
    The thesis at hand addresses design, characterization and experimental testing of pulsed high-field magnets for utilization in the field of laser-plasma physics. The central task was to establish a technology platform that allows to manipulate laser-driven ion sources in a way that the accelerated ions can be used in complex application studies, e.g. radiobiological cell or tumor irradiation. Laser-driven ion acceleration in the regime of target normal sheath acceleration (TNSA) offers the unique opportunity to accelerate particles to kinetic energies of few 10MeV on the micrometer scale. The generated bunches are short, intense, show broad exponentially decaying energy spectra and high divergence. In order to efficiently use the generated particles, it is crucial to gain control over their divergence directly after their production. For most applications it additionally is favorable to reduce the energy spread of the beam. This work shows that the developed pulsed high-field magnets, so-called solenoids (cylindrical magnets), can efficiently capture, transport and focus laser-accelerated protons. The chromaticity of the magnetic lens thereby provides for energy selection. Three prototype solenoids, adapted to fit different application scenarios, and associated current pulse drivers have been developed. The magnets generate fields of several 10 T. Pulse durations are of the order of one millisecond and thus the fields can be considered as quasi-static for laser-plasma interaction processes taking place on the ps- to ns-scale. Their high field strength in combination with abandoning magnetic cores make the solenoids compact and light-weight. The presented experiments focus on a solenoid magnet designed for the capture of divergent laser-driven ion beams. They have been carried out at the 6MV tandetron accelerator and the laser acceleration source Draco of Helmholtz-Zentrum Dresden – Rossendorf as well as at the PHELIX laser of GSI Helmholtzzentrum fĂŒr Schwerionenforschung, Darmstadt

    Verification and Anomaly Detection for Event-Based Control of Manufacturing Systems.

    Full text link
    Many important systems can be described as discrete event systems, including a manufacturing cell and patient flow in a clinic. Faults often occur in these systems and addressing these faults is important to ensure proper functioning. There are two main ways to address faults. Faults can be prevented from ever occurring, or they can be detected at the time at which they occur. This work develops methods to address faults in event-based systems for which there is no formal, pre-existing model. A primary application is manufacturing systems, where reducing downtime is especially important and pre-existing formal models are not commonly available. There are three main contributions. The first contribution is formalizing input order robustness - inputs occurring in different orders and yielding the same final state and set of outputs - and creating a method for its verification for logic controllers and networks of controllers. Theory is developed for a class of networks of controllers to be verified modularly, reducing the computational complexity. Input order robustness guarantees determinism of the closed-loop system. The second contribution is an anomaly detection solution for event-based systems without a pre-existing formal model. This solution involves model generation, performance assessment, and anomaly detection itself. A new variation of Petri nets was created to model the systems in this solution that incorporates resources in a less restrictive way. The solution detects anomalies and provides information about when the anomaly was first observed to help with debugging. The third contribution is the identification and resolution of five inconsistencies found between typical academic assumptions and industry practice when applying the anomaly detection solution to an industrial system. Resolutions to the inconsistencies included working with industry collaborators to change logic, and developing new algorithms to incorporate into the anomaly detection solution. Through these resolutions, the anomaly detection solution was improved to make it easier to apply to industrial systems. These three contributions for handling faults will help reduce down-time in manufacturing systems, and hence increase productivity and decrease costs.Ph.D.Electrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/78897/1/lzallen_1.pd

    Laboratory technology research: Abstracts of FY 1998 projects

    Full text link

    Aspetti avanzati di radioprotezione nell'uso di acceleratori di particelle in campo medico

    Get PDF
    In this work, the well-known MC code FLUKA was used to simulate the GE PETrace cyclotron (16.5 MeV) installed at “S. Orsola-Malpighi” University Hospital (Bologna, IT) and routinely used in the production of positron emitting radionuclides. Simulations yielded estimates of various quantities of interest, including: the effective dose distribution around the equipment; the effective number of neutron produced per incident proton and their spectral distribution; the activation of the structure of the cyclotron and the vault walls; the activation of the ambient air, in particular the production of 41Ar, the assessment of the saturation yield of radionuclides used in nuclear medicine. The simulations were validated against experimental measurements in terms of physical and transport parameters to be used at the energy range of interest in the medical field. The validated model was also extensively used in several practical applications uncluding the direct cyclotron production of non-standard radionuclides such as 99mTc, the production of medical radionuclides at TRIUMF (Vancouver, CA) TR13 cyclotron (13 MeV), the complete design of the new PET facility of “Sacro Cuore – Don Calabria” Hospital (Negrar, IT), including the ACSI TR19 (19 MeV) cyclotron, the dose field around the energy selection system (degrader) of a proton therapy cyclotron, the design of plug-doors for a new cyclotron facility, in which a 70 MeV cyclotron will be installed, and the partial decommissioning of a PET facility, including the replacement of a Scanditronix MC17 cyclotron with a new TR19 cyclotron.In questo lavoro, il codice Monte Carlo (MC) FLUKA ù stato utilizzato per simulare il ciclotrone GE PETtrace (16.5 MeV) installato presso l’azienda ospedaliera “S. Orsola-Malpighi” (Bologna, IT), quotidianamente utilizzato per la produzione di radiofarmaci PET. Le simulazioni sono state effettuate per valutare diversi fenomeni e quantità d’interesse radiologico tra cui l’equivalente di dose ambientale nell’intorno dell’acceleratore, il numero di neutroni emessi per protone incidente e la loro distribuzione spettrale, l’attivazione dei componenti del ciclotrone e delle pareti del bunker, l’attivazione dell’aria interna al bunker ed in particolare la produzione di 41Ar, la resa a saturazione di radionuclidi d’interesse in medicina nucleare. Le simulazioni sono state validate, in termini di parametri fisici e di trasporto da utilizzare nel range energetico caratteristico delle applicazioni mediche, con una serie di misure sperimentali. Il modello MC validato ù stato quindi applicato ad altri casi pratici quali lo studio di fattibilità della produzione diretta in ciclotrone di 99mTc, la produzione di radionuclidi ad uso medico con il ciclotrone TR13 (13 MeV) installato presso il centro di ricerca TRIUMF (Vancouver, CA), la progettazione completa del nuovo centro PET dell’ospedale “Sacro Cuore-Don Calabria” di Negrar (Verona, IT), incluso il ciclotrone ACSI TR19 (19 MeV), lo studio del campo di dose nell’intorno di un sistema di selezione dell’energia (degrader) di un ciclotrone per terapia, la progettazione di specifiche “porte a tappo” per un sito di produzione di radionuclidi ad uso medico, in cui verrà installato un ciclotrone da 70 MeV e sei diverse beam line, e per il parziale decommissioning di un centro PET e la sostituzione di un ciclotrone Scanditronix MC17 (17 MeV), attualmente installato, con una nuova unità TR19
    • 

    corecore