786 research outputs found

    Requirements for implementing real-time control functional modules on a hierarchical parallel pipelined system

    Get PDF
    Analysis of a robot control system leads to a broad range of processing requirements. One fundamental requirement of a robot control system is the necessity of a microcomputer system in order to provide sufficient processing capability.The use of multiple processors in a parallel architecture is beneficial for a number of reasons, including better cost performance, modular growth, increased reliability through replication, and flexibility for testing alternate control strategies via different partitioning. A survey of the progression from low level control synchronizing primitives to higher level communication tools is presented. The system communication and control mechanisms of existing robot control systems are compared to the hierarchical control model. The impact of this design methodology on the current robot control systems is explored

    Energy-Efficient Hardware-Accelerated Synchronization for Shared-L1-Memory Multiprocessor Clusters

    Get PDF
    The steeply growing performance demands for highly power- and energy-constrained processing systems such as end-nodes of the Internet-of-Things (IoT) have led to parallel near-threshold computing (NTC), joining the energy-efficiency benefits of low-voltage operation with the performance typical of parallel systems. Shared-L1-memory multiprocessor clusters are a promising architecture, delivering performance in the order of GOPS and over 100 GOPS/W of energy-efficiency. However, this level of computational efficiency can only be reached by maximizing the effective utilization of the processing elements (PEs) available in the clusters. Along with this effort, the optimization of PE-to-PE synchronization and communication is a critical factor for performance. In this article, we describe a light-weight hardware-accelerated synchronization and communication unit (SCU) for tightly-coupled clusters of processors. We detail the architecture, which enables fine-grain per-PE power management, and its integration into an eight-core cluster of RISC-V processors. To validate the effectiveness of the proposed solution, we implemented the eight-core cluster in advanced 22 nm FDX technology and evaluated performance and energy-efficiency with tunable microbenchmarks and a set of rea-life applications and kernels. The proposed solution allows synchronization-free regions as small as 42 cycles, over 41 smaller than the baseline implementation based on fast test-and-set access to L1 memory when constraining the microbenchmarks to 10 percent synchronization overhead. When evaluated on the real-life DSP-applications, the proposed SCU improves performance by up to 92 and 23 percent on average and energy efficiency by up to 98 and 39 percent on average

    Hyperswitch communication network

    Get PDF
    The Hyperswitch Communication Network (HCN) is a large scale parallel computer prototype being developed at JPL. Commercial versions of the HCN computer are planned. The HCN computer being designed is a message passing multiple instruction multiple data (MIMD) computer, and offers many advantages in price-performance ratio, reliability and availability, and manufacturing over traditional uniprocessors and bus based multiprocessors. The design of the HCN operating system is a uniquely flexible environment that combines both parallel processing and distributed processing. This programming paradigm can achieve a balance among the following competing factors: performance in processing and communications, user friendliness, and fault tolerance. The prototype is being designed to accommodate a maximum of 64 state of the art microprocessors. The HCN is classified as a distributed supercomputer. The HCN system is described, and the performance/cost analysis and other competing factors within the system design are reviewed

    Advanced manned space flight simulation and training: An investigation of simulation host computer system concepts

    Get PDF
    The findings of a preliminary investigation by Southwest Research Institute (SwRI) in simulation host computer concepts is presented. It is designed to aid NASA in evaluating simulation technologies for use in spaceflight training. The focus of the investigation is on the next generation of space simulation systems that will be utilized in training personnel for Space Station Freedom operations. SwRI concludes that NASA should pursue a distributed simulation host computer system architecture for the Space Station Training Facility (SSTF) rather than a centralized mainframe based arrangement. A distributed system offers many advantages and is seen by SwRI as the only architecture that will allow NASA to achieve established functional goals and operational objectives over the life of the Space Station Freedom program. Several distributed, parallel computing systems are available today that offer real-time capabilities for time critical, man-in-the-loop simulation. These systems are flexible in terms of connectivity and configurability, and are easily scaled to meet increasing demands for more computing power

    Sharing the instruction cache among lean cores on an asymmetric CMP for HPC applications

    Get PDF
    High performance computing (HPC) applications have parallel code sections that must scale to large numbers of cores, which makes them sensitive to serial regions. Current supercomputing systems with heterogeneous or asymmetric CMPs (ACMP) combine few high-performance big cores for serial regions, together with many low-power lean cores for throughput computing. The low requirements of HPC applications in the core front-end lead some designs, such as SMT and GPU cores, to share front-end structures including the instruction cache (I-cache). However, little work exists to analyze the benefit of sharing the I-cache among full cores, which seems compelling as a solution to reduce silicon area and power. This paper analyzes the performance, power and area impact of such a design on an ACMP with one high-performance core and multiple low-power cores. Having identified that multiple cores run the same code during parallel regions, the lean cores share the I-cache with the intent of benefiting from mutual prefetching, without increasing the average access latency. Our exploration of the multiple parameters finds the sweet spot on a wide interconnect to access the shared I-cache and the inclusion of a few line buffers to provide the required bandwidth and latency to sustain performance. The projections with McPAT and a rich set of HPC benchmarks show 11% area savings with a 5% energy reduction at no performance cost.The research was supported by European Unions 7th Framework Programme [FP7/2007-2013] under project Mont-Blanc (288777), the Ministry of Economy and Competitiveness of Spain (TIN2012-34557, TIN2015-65316-P, and BES-2013-063925), Generalitat de Catalunya (2014-SGR-1051 and 2014-SGR-1272), HiPEAC-3 Network of Excellence (ICT-287759), and finally the Severo Ochoa Program (SEV-2011-00067) of the Spanish Government.Peer ReviewedPostprint (author's final draft

    Statistical Regression Methods for GPGPU Design Space Exploration

    Get PDF
    General Purpose Graphics Processing Units (GPGPUs) have leveraged the performance and power efficiency of today\u27s heterogeneous systems to usher in a new era of innovation in high-performance scientific computing. These systems can offer significantly high performance for massively parallel applications; however, their resources may be wasted due to inefficient tuning strategies. Previous application tuning studies pre-dominantly employ low-level, architecture specific tuning which can make the performance modeling task difficult and less generic. In this research, we explore the GPGPU design space featuring the memory hierarchy for application tuning using regression-based performance prediction framework and rank the design space based on the runtime performance. The regression-based framework models the GPGPU device computations using algorithm characteristics such as the number of floating-point operations, total number of bytes, and hardware parameters pertaining to the GPGPU memory hierarchy as predictor variables. The computation component regression models are developed using several instrumented executions of the algorithms that include a range of FLOPS-to-Byte requirement. We validate our model with a Synchronous Iterative Algorithm (SIA) set that includes Spiking Neural Networks (SNNs) and Anisotropic Diffusion Filtering (ADF) for massive images. The highly parallel nature of the above mentioned algorithms, in addition to their wide range of communication-to-computation complexities, makes them good candidates for this study. A hierarchy of implementations for the SNNs and ADF is constructed and ranked using the regression-based framework. We further illustrate the Synchronous Iterative GPGPU Execution (SIGE) model on the GPGPU-augmented Palmetto Cluster. The performance prediction framework maps appropriate design space implementation for 4 out of 5 case studies used in this research. The final goal of this research is to establish the efficacy of the regression-based framework to accurately predict the application kernel runtime, allowing developers to correctly rank their design space prior to the large-scale implementation

    Principles for problem aggregation and assignment in medium scale multiprocessors

    Get PDF
    One of the most important issues in parallel processing is the mapping of workload to processors. This paper considers a large class of problems having a high degree of potential fine grained parallelism, and execution requirements that are either not predictable, or are too costly to predict. The main issues in mapping such a problem onto medium scale multiprocessors are those of aggregation and assignment. We study a method of parameterized aggregation that makes few assumptions about the workload. The mapping of aggregate units of work onto processors is uniform, and exploits locality of workload intensity to balance the unknown workload. In general, a finer aggregate granularity leads to a better balance at the price of increased communication/synchronization costs; the aggregation parameters can be adjusted to find a reasonable granularity. The effectiveness of this scheme is demonstrated on three model problems: an adaptive one-dimensional fluid dynamics problem with message passing, a sparse triangular linear system solver on both a shared memory and a message-passing machine, and a two-dimensional time-driven battlefield simulation employing message passing. Using the model problems, the tradeoffs are studied between balanced workload and the communication/synchronization costs. Finally, an analytical model is used to explain why the method balances workload and minimizes the variance in system behavior

    Synthesis of application specific processor architectures for ultra-low energy consumption

    No full text
    In this paper we suggest that further energy savings can be achieved by a new approach to synthesis of embedded processor cores, where the architecture is tailored to the algorithms that the core executes. In the context of embedded processor synthesis, both single-core and many-core, the types of algorithms and demands on the execution efficiency are usually known at the chip design time. This knowledge can be utilised at the design stage to synthesise architectures optimised for energy consumption. Firstly, we present an overview of both traditional energy saving techniques and new developments in architectural approaches to energy-efficient processing. Secondly, we propose a picoMIPS architecture that serves as an architectural template for energy-efficient synthesis. As a case study, we show how the picoMIPS architecture can be tailored to an energy efficient execution of the DCT algorithm
    corecore