201 research outputs found

    Optimal Mode Selection for Full-Duplex Enabled D2D Cognitive Networks

    Full text link
    © 2019 IEEE. Full-Duplex (FD) and Device-to-Device (D2D) communications have been recognized as one of the successful solutions of spectrum scarcity in 5G networks. Significant advancements in self-interference-to-power-ratio (SIPR) reduction have paved the way for FD use to double the data rates and reduce the latency. This advantage can now be exploited to optimize dynamic spectrum sharing among different radio access technologies in cognitive networks. However, protecting the primary user communication has been a challenging problem in such coexistence. In this paper, we provide an abstract level analysis of protecting primary users reception based on secondary users FD enabled communication. We also propose optimal mode selection (Half-duplex, Full-duplex, or silent) for secondary D2D users depending on its impact on primary users. Our analysis presents the significant advantage of D2D mode selection in terms of efficient spectrum utilization while protecting the primary user transmission, thus, leading the way for FD enabled D2D setup. Depending on the location and transmit power of D2D users, the induced aggregate interference should not violate the interference threshold of primary users. For this, we characterize the interference from D2D links and derive the probability for successful D2D users for half-duplex and full-duplex modes. The analyses are further supported by theoretical and extensive simulation results

    Separation Framework: An Enabler for Cooperative and D2D Communication for Future 5G Networks

    Get PDF
    Soaring capacity and coverage demands dictate that future cellular networks need to soon migrate towards ultra-dense networks. However, network densification comes with a host of challenges that include compromised energy efficiency, complex interference management, cumbersome mobility management, burdensome signaling overheads and higher backhaul costs. Interestingly, most of the problems, that beleaguer network densification, stem from legacy networks' one common feature i.e., tight coupling between the control and data planes regardless of their degree of heterogeneity and cell density. Consequently, in wake of 5G, control and data planes separation architecture (SARC) has recently been conceived as a promising paradigm that has potential to address most of aforementioned challenges. In this article, we review various proposals that have been presented in literature so far to enable SARC. More specifically, we analyze how and to what degree various SARC proposals address the four main challenges in network densification namely: energy efficiency, system level capacity maximization, interference management and mobility management. We then focus on two salient features of future cellular networks that have not yet been adapted in legacy networks at wide scale and thus remain a hallmark of 5G, i.e., coordinated multipoint (CoMP), and device-to-device (D2D) communications. After providing necessary background on CoMP and D2D, we analyze how SARC can particularly act as a major enabler for CoMP and D2D in context of 5G. This article thus serves as both a tutorial as well as an up to date survey on SARC, CoMP and D2D. Most importantly, the article provides an extensive outlook of challenges and opportunities that lie at the crossroads of these three mutually entangled emerging technologies.Comment: 28 pages, 11 figures, IEEE Communications Surveys & Tutorials 201
    • …
    corecore