4,861 research outputs found

    Assistive Planning in Complex, Dynamic Environments: a Probabilistic Approach

    Full text link
    We explore the probabilistic foundations of shared control in complex dynamic environments. In order to do this, we formulate shared control as a random process and describe the joint distribution that governs its behavior. For tractability, we model the relationships between the operator, autonomy, and crowd as an undirected graphical model. Further, we introduce an interaction function between the operator and the robot, that we call "agreeability"; in combination with the methods developed in~\cite{trautman-ijrr-2015}, we extend a cooperative collision avoidance autonomy to shared control. We therefore quantify the notion of simultaneously optimizing over agreeability (between the operator and autonomy), and safety and efficiency in crowded environments. We show that for a particular form of interaction function between the autonomy and the operator, linear blending is recovered exactly. Additionally, to recover linear blending, unimodal restrictions must be placed on the models describing the operator and the autonomy. In turn, these restrictions raise questions about the flexibility and applicability of the linear blending framework. Additionally, we present an extension of linear blending called "operator biased linear trajectory blending" (which formalizes some recent approaches in linear blending such as~\cite{dragan-ijrr-2013}) and show that not only is this also a restrictive special case of our probabilistic approach, but more importantly, is statistically unsound, and thus, mathematically, unsuitable for implementation. Instead, we suggest a statistically principled approach that guarantees data is used in a consistent manner, and show how this alternative approach converges to the full probabilistic framework. We conclude by proving that, in general, linear blending is suboptimal with respect to the joint metric of agreeability, safety, and efficiency

    Towards a Shared Control Navigation Function:Efficiency Based Command Modulation

    Get PDF
    This paper presents a novel shared control algorithm for robotized wheelchairs. The proposed algorithm is a new method to extend autonomous navigation techniques into the shared control domain. It reactively combines user’s and robot’s commands into a continuous function that approximates a classic Navigation Function (NF) by weighting input commands with NF constraints. Our approach overcomes the main drawbacks of NFs -calculus complexity and limitations on environment modeling- so it can be used in dynamic unstructured environments. It also benefits from NF properties: convergence to destination, smooth paths and safe navigation. Due to the user’s contribution to control, our function is not strictly a NF, so we call it a pseudo-navigation function (PNF) instead.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Collaborative Control for a Robotic Wheelchair: Evaluation of Performance, Attention, and Workload

    Get PDF
    Powered wheelchair users often struggle to drive safely and effectively and in more critical cases can only get around when accompanied by an assistant. To address these issues, we propose a collaborative control mechanism that assists the user as and when they require help. The system uses a multiple–hypotheses method to predict the driver’s intentions and if necessary, adjusts the control signals to achieve the desired goal safely. The main emphasis of this paper is on a comprehensive evaluation, where we not only look at the system performance, but, perhaps more importantly, we characterise the user performance, in an experiment that combines eye–tracking with a secondary task. Without assistance, participants experienced multiple collisions whilst driving around the predefined route. Conversely, when they were assisted by the collaborative controller, not only did they drive more safely, but they were able to pay less attention to their driving, resulting in a reduced cognitive workload. We discuss the importance of these results and their implications for other applications of shared control, such as brain–machine interfaces, where it could be used to compensate for both the low frequency and the low resolution of the user input

    Overcoming barriers and increasing independence: service robots for elderly and disabled people

    Get PDF
    This paper discusses the potential for service robots to overcome barriers and increase independence of elderly and disabled people. It includes a brief overview of the existing uses of service robots by disabled and elderly people and advances in technology which will make new uses possible and provides suggestions for some of these new applications. The paper also considers the design and other conditions to be met for user acceptance. It also discusses the complementarity of assistive service robots and personal assistance and considers the types of applications and users for which service robots are and are not suitable

    Human-Mechanical system interaction in Virtual Reality

    Get PDF
    The present work aims to show the great potential of Virtual Reality (VR) technologies in the field of Human-Robot Interaction (HRI). Indeed, it is foreseeable that in not too distant future cooperating robots will be increasingly present in human environments. Many authors actually believe that after the current information revolution, we will witness the so-called "robotics revolution", with the spread of increasingly intelligent and autonomous robots capable of moving into our own environments. Since these machines must be able to interact with human beings in a safe way, new design tools for the study of Human-Robot Interaction (HRI) are needed. The author believes that VR is an ideal design tool for the study of the interaction between humans and automatic machines, since it allows the designers to interact in real-time with virtual robotic systems and to evaluate different control algorithms, without the need of physical prototypes. This also shields the user from any risk related to the physical experimentation. However, VR technologies have also a more immediate application in the field of HRI, such as the study of usability of interfaces for real-time controlled robots. In fact, these robots, such as robots for microsurgery or even "teleoperated" robots working in a hostile environments, are already quite common. VR allows the designers to evaluate the usability of such interfaces by relating their physical input with a virtual output. In particular, the author has developed a new software application aimed at simulating automatic robots and, more generally, mechanical systems in a virtual environment. The user can interact with one or more virtual manipulators and also control them in real-time by means of several input devices. Finally, an innovative approach to the modeling and control of a humanoid robot with high degree of redundancy is discussed. VR implementation of a virtual humanoid is useful for the study of both humanoid robots and human beings

    A Dynamic Localized Adjustable Force Field Method for Real-time Assistive Non-holonomic Mobile Robotics

    Get PDF
    Providing an assistive navigation system that augments rather than usurps user control of a powered wheelchair represents a significant technical challenge. This paper evaluates an assistive collision avoidance method for a powered wheelchair that allows the user to navigate safely whilst maintaining their overall governance of the platform motion. The paper shows that by shaping, switching and adjusting localized potential fields we are able to negotiate different obstacles by generating a more intuitively natural trajectory, one that does not deviate significantly from the operator in the loop desired-trajectory. It can also be seen that this method does not suffer from the local minima problem, or narrow corridor and proximity oscillation, which are common problems that occur when using potential fields. Furthermore this localized method enables the robotic platform to pass very close to obstacles, such as when negotiating a narrow passage or doorway
    corecore