8,659 research outputs found

    Microgrid design, control, and performance evaluation for sustainable energy management in manufacturing

    Get PDF
    This research studies the capacity sizing, control strategies, and performance evaluation of the microgrids with hybrid renewable sources for manufacturing end use customers towards a distributed sustainable energy system paradigm. Microgrid technology has been widely investigated and applied in commercial and residential sector, while for manufacturers, it has been less explored and utilized. To fill the gap, the dissertation first proposes a cost-effective sizing model to identify the capacities as well as control strategies of the components in microgrids considering a commonly used energy tariff, i.e., Time of Use (TOU). Then, the sizing model is extended by integrating control strategies for both microgrid components and manufacturing systems considering a typical demand response program, i.e., Critical Peak Pricing (CPP), where customer side load adjustment is highly encouraged. After that, the control strategy of the manufacturers in an overgeneration mitigation-oriented demand response program is further investigated based on the identified optimal size of onsite microgrid to minimize the energy cost. Later, the system is analyzed from its higher level of abstraction where a prosumer community is developed by aggregating such manufacturers with onsite microgrid system. To enhance the reliable energy operation in the community, the performance of the microgrid is investigated through the estimation of the lifetime of Battery Energy Storage System (BESS), a critical design parameter the architecture. Finally, conclusions are presented and future research on real-time joint control strategy for both microgrids and manufacturing systems and identification as well as optimal energy management of the controllable loads in manufacturing system are discussed --Abstract, page iii

    Review of trends and targets of complex systems for power system optimization

    Get PDF
    Optimization systems (OSs) allow operators of electrical power systems (PS) to optimally operate PSs and to also create optimal PS development plans. The inclusion of OSs in the PS is a big trend nowadays, and the demand for PS optimization tools and PS-OSs experts is growing. The aim of this review is to define the current dynamics and trends in PS optimization research and to present several papers that clearly and comprehensively describe PS OSs with characteristics corresponding to the identified current main trends in this research area. The current dynamics and trends of the research area were defined on the basis of the results of an analysis of the database of 255 PS-OS-presenting papers published from December 2015 to July 2019. Eleven main characteristics of the current PS OSs were identified. The results of the statistical analyses give four characteristics of PS OSs which are currently the most frequently presented in research papers: OSs for minimizing the price of electricity/OSs reducing PS operation costs, OSs for optimizing the operation of renewable energy sources, OSs for regulating the power consumption during the optimization process, and OSs for regulating the energy storage systems operation during the optimization process. Finally, individual identified characteristics of the current PS OSs are briefly described. In the analysis, all PS OSs presented in the observed time period were analyzed regardless of the part of the PS for which the operation was optimized by the PS OS, the voltage level of the optimized PS part, or the optimization goal of the PS OS.Web of Science135art. no. 107

    Microgrids: Planning, Protection and Control

    Get PDF
    This Special Issue will include papers related to the planning, protection, and control of smart grids and microgrids, and their applications in the industry, transportation, water, waste, and urban and residential infrastructures. Authors are encouraged to present their latest research; reviews on topics including methods, approaches, systems, and technology; and interfaces to other domains such as big data, cybersecurity, human–machine, sustainability, and smart cities. The planning side of microgrids might include technology selection, scheduling, interconnected microgrids, and their integration with regional energy infrastructures. The protection side of microgrids might include topics related to protection strategies, risk management, protection technologies, abnormal scenario assessments, equipment and system protection layers, fault diagnosis, validation and verification, and intelligent safety systems. The control side of smart grids and microgrids might include control strategies, intelligent control algorithms and systems, control architectures, technologies, embedded systems, monitoring, and deployment and implementation

    Microgrid Energy Management

    Get PDF
    In IEEE Standards, a Microgrid is defined as a group of interconnected loads and distributed energy resources with clearly defined electrical boundaries, which acts as a single controllable entity with respect to the grid and can connect and disconnect from the grid to enable it to operate in both grid-connected or island modes. This Special Issue focuses on innovative strategies for the management of the Microgrids and, in response to the call for papers, six high-quality papers were accepted for publication. Consistent with the instructions in the call for papers and with the feedback received from the reviewers, four papers dealt with different types of supervisory energy management systems of Microgrids (i.e., adaptive neuro-fuzzy wavelet-based controls, cost-efficient power-sharing techniques, and two-level hierarchical energy management systems); the proposed energy management systems are of quite general purpose and aim to reduce energy usages and monetary costs. In the last two papers, the authors concentrate their research efforts on the management of specific cases, i.e., Microgrids with electric vehicle charging stations and for all-electric ships
    corecore